Fuzzy n-fold obstinate ideals in mv -algebras

Document Type : Research Paper

Author

Faculty of Mathematics and computing, Higher Education Complex of Bam, Bam,Iran.

Abstract

Abstract. In this paper, we introduce the notion of n-fold Boolean ideals of an MV -algebra and consider the quotient algebras induced by n-fold Boolean ideals. Also we prove that I is a n-fold Boolean ideal of an MV -algebra if and only if A/I is a n+1-bounded MV -algebra if and only if A/I is a subdirect product of algebras Lk,with 2 ≤ k ≤ n.Finally, we introduce the notion of fuzzy n-fold obstinate ideals in MV -algebras. We give some characterizations of fuzzy n-fold obstinate ideals.

Keywords


[1] L. P. Belluce, A. Di Nola, A. Lettieri, Local MV -algebras, Rend. Circ. Mat. Palermo. (2) 42 (1993), 347-361.
[2] C. C. Chang,Algebraic analysis of many valued logic, Trans. Amer. Math. Soc., 88 (1958), 467-490.
[3] C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soco, 93 (1959), 74-80.
[4] R. Cignoli, I. M. L. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic, Dordrecht, (2000).
[5] C. S. Hoo, MV -algebras, ideals and semisimplicity, Math. Japon., 34, no. 4 (1989), 563-583.
[6] F. Forouzesh, E. Eslami, A. Borumand Saeid, Radical of A-ideals in MV - modules, Annals of the Alexandru Ioan Cuza University-Math, 1 (2016), 33-57.
[7] F. Forouzesh, E. Eslami, Fuzzy n-fold Boolean ideals in MV -algebras, The Jour-nal of Fuzzy Mathematics, (to appear).
[8] F. Forouzesh, n-fold obstinate ideals in MV -algebras, New Mathematics and Natural Computation, Vol. 12, No. 3 (2016), 265-275.
[9] F. Forouzesh, Fuzzy obstinate ideals in MV -algebras, Journal of algebraic system,4 (2017), 97-101.
[10] C. S. Hoo, Fuzzy ideals of BCI and MV-algebras, Fuzzy Sets and Systems 62 (1994), 111–114.
[11] C. S. Hoo, Fuzzy implicative and Boolean ideals of MV-algebras, Fuzzy Sets and Systems, 66 (1994) 315–327.
[12] P. Hajek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dor-drecht 1998.
[13] M. Haveshki, E. Eslami,n-fold filters in BL-algebras, Math. Log. Quart. 54 (2008), 176-186.
[14] A. Iorgulescu, Algebras of logic as BCK algebras, Academy of economic studies Bucharest, Romania, (2008).
[15] M. Kondo, W. A. Dudek, On the transfer principle in fuzzy theory, Mathware Soft Comput., 12 (2005), 4–55.
[16] S. Motamed, A.Borumand,n-fold obstinate filters in BL-algebras, Neural Com-puting and Applications,20(2011),461-472.
[17] D. Mundici, Interpretation of AF C-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63.
[18] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria Craiova (2007).
[19] O. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991) 935-942.
[20] A. Zadeh, Fuzzy set, Information and Control, 8 (1965), 338–353.