Generalization of bi-polar fuzzy soft interior ideals over semirings

Document Type : Research Paper

Author

Department of Mathematics, GIT, GITAM University, Visakhapatnam- 530 045,A.P., India.

Abstract

In this paper, we introduce the notion of a generalized bi-polar fuzzy set whose membership degree range is [-0.5,0.5], as a generalization of a fuzzy set and a bi-polar fuzzy set, the notion of generalized bi-polar fuzzy ideal, generalized bi-polar fuzzy interior ideal of semiring, generalized bi-polar fuzzy soft ideal and generalized bi-polar fuzzy soft interior ideal over semiring and study some of their algebraic properties and the relations between them.

Keywords


[1] U. Acar, F. Koyuncu and B. Tanay, Soft sets and Soft rings, Comput. Math.Appli., 59(2010), 3458–3463.
[2] M. Akram, Bipolar fuzzy soft Lie algebras, Quasigroups and Related Systems 21 (2013), 1 - 10
[3] H. Aktas and N. Cagman, Soft sets and soft groups, Information Science,177(2007), 2726–2735.
[4] K. T. Attanassov, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20 (1) (1986),87–96.
[5] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appli., 56(2008),2621–2628.
[6] J. Ghosh, B. Dinda and T. K. Samanta, Fuzzy soft rings and Fuzzy soft ideals, Int.J. P. App.Sc.Tech., 2(2)(2011), 66–74.
[7] Y.B. Jun, H.S. Kim and K.J. Lee, Bipolar fuzzy translation in BCK/BCIalgebra, J. of the Chungcheong Math. Soc., (22)
(3) (2009), 399 - 408.
[8] K. H. Kim and Y. B. Jun,Intuitionistic fuzzy interior ideals of semigroups,Int. J. of Math. and Math.Sci.,27(5)(2001),261- 267.
[9] K.J.Lee,Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCIalgebras,Bull.Malays. Math.Soc.,(32)(2009),361 - 373.
[10] K. M. Lee, Bipolar valued fuzzy sets and their applications, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand (2000), 307 - 312.
[11] K. M. Lee, Comparison of interval valued fuzzy sets, intuitionistic fuzzy sets and bipolar valued fuzzy sets, J. Fuzzy Logic intelligent Systems, (14)(2)(2004), 125 - 129.
[12] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, The J. of Fuzzy Math., 9(3)(2001), 589 - 602.
[13] D. Mandal, Fuzzy ideals and fuzzy interior ideals in ordered semirings, Fuzzy Inf. Engg., 6(1) (2014), 101 114
[14] D. A. Molodtsov, Soft set theory first results, Computers and math. with appli.,37 (1999), 19 - 31.
[15] P.K. Maji, R.Biswas and A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9(3) (2001),589 - 602
[16] M. Murali Krishna Rao, r- Fuzzy Ideals of Γ-incline, Annals of Fuzzy Mathemat-ics and Informatics, 17(2) (2019).
[17] M. Murali Krishna Rao, Fuzzy soft Γ−semiring homomorphism, Anl. of Fuzzy Math. and Info., 12(4) (2016), 479-489.
[18] M. Murali Krishna Rao, Fuzzy soft Γ−semiring and fuzzy soft k−ideal over Γ−semiring, Anl. of Fuzzy Math. and Info.,
9 (2)(2015), 12–25.
[19] M. Murali Krishna Rao and B. Venkateswarlu, An intuitionistic normal fuzzy soft k−ideal over a Γ−semiring, Anl. of Fuzzy Math. and Info., 11(3) ( 2016),361-376.
[20] M. Murali Krishna Rao, Fuzzy ideal graphs of a semigroup, Annals of Fuzzy Mathematics and Informatics,Volume 16( 3) (2018)pp. 363371.
[21] Marapureddy Murali Krishna Rao, Fuzzy graph of semigroup, Bull. Int. Math. Virtual Inst. 8 (3) (2018) 439–448.
[22] Marapureddy Murali Krishna Rao,Fuzzy left and right bi-quasl ideals of semiring, Bull. Int. Math. Virtual Inst.,Vol 8(3), (2018), 449-460.
[23] M. Murali Krishna Rao and B. Venkateswarlu, Regular Γ−incline and field Γ−semiring, Novi Sad J. Math.,45(2) (2015), 155-171.
[24] M. Murali Krishna Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst , DOI: Vol. 8(2018),45-53. 10.7251/BIMVI1801045R
[25] M. Murali Krishna Rao and B. Venkateswarlu, Fuzzy soft k-ideals over semir-ing and Fuzzy soft semiring homomorphism ,Journal of Hyperstructures, 4 (2)(2015), 93-116.
[26] M. Murali Krishna Rao, Fuzzy soft ideal, Fuzzy soft bi-ideal, Fuzzy soft quasi-ideal and fuzzy soft interior ideal over ordered Γ−Semiring, Asia Pacific J. Math,Vol 5(1), (2018), 60-84.
[27] M. Murali Krishna Rao,Tripolar fuzzy interior ideals of -semigroup , Annals of Fuzzy Mathematics and Informatics,Volume 15(2) 2018, pp. 199206.
[28] A. Rosenfeld, Fuzzy groups, J. Math.Anal.Appl. 35(1971), 512-517.
[29] L. A. Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.
[30] W. R. Zhang, Bipolar fuzzy sets, Proc. of FUZZ-IEEE, (1998), 835-840.