Probabilistic modular metric spaces

Document Type : Research Paper

Authors

1 Department of Statistics, Islamic Azad University Tehran North Branch, Tehran, Iran

2 Department of Mathematics, Shahriar Branch, Islamic Azad University, Shahriar,Iran

Abstract

The purpose of this study is to investigate the connection between probabilistic and modular metric spaces. We discuss
several important properties such as convergence and completeness,etc, and the relationship among the mentioned properties in the probabilistic metric and modular metric spaces. Also corresponding examples of probabilistic metric space obtained by a metric space is extended to modular metric spaces.

Keywords


1] N. Abbasi and H. Mottaghi Golshan. On best approximation in fuzzy metric spaces. Kybernetika (Prague), 51(2):374-386, 2015.
[2] N. Abbasi and H. Mottaghi Golshan. Caristi's  xed point theorem and its equivalences in fuzzy metric spaces. Kybernetika (Prague), 52(6):966{979, 2016.
[3] A. A. Abdou and M. A. Khamsi. Fixed points of multivalued contraction mappings in modular metric spaces. Fixed Point Theory and Applications, 2014(1):249, 2014.
[4] S.-s. Chang, Y. J. Cho, and S. M. Kang. Nonlinear operator theory in probabilistic metric spaces. Nova Science Publishers, Inc., Huntington, NY, 2001.
[5] V. V. Chistyakov. Metric modulars and their application. Dokl. Akad. Nauk, 406(2):165-168, 2006.
[6] V. V. Chistyakov. Modular metric spaces. I. Basic concepts. Non- linear Anal., 72(1):1-14, 2010.
[7] V. V. Chistyakov. Metric modular spaces. SpringerBriefs in Mathematics. Springer, Cham, 2015. Theory and applications.
[8] Y. J. Cho, T. M. Rassias, and R. Saadati. Fuzzy operator theory in mathematical analysis. Springer, 2018.
[9] K. Fallahi and K. Nourouzi. Probabilistic modular spaces and linear operators. Acta Appl. Math., 105(2):123-140, 2009.
[10] A. George and P. Veeramani. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3):395-399, 1994.
[11] M. Grabiec. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3):385-389, 1988.
[12] V. Gregori, A. Lopez-Crevillen, S. Morillas, and A. Sapena. On convergence in fuzzy metric spaces. Topology Appl., 156(18):3002-3006, 2009.
[13] V. Gregori, J.-J. Mi~nana, and S. Morillas. Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204:71-85, 2012.
[14] V. Gregori, S. Morillas, and A. Sapena. Examples of fuzzy metrics and applications. Fuzzy Sets and Systems, 170:95-111, 2011.
[15] V. Gregori and S. Romaguera. Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3):411-420, 2004.
[16] O. Hadzic and E. Pap. Fixed point theory in probabilistic metric spaces, volume 536 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2001.
[17] W. M. Kozlowski. Modular function spaces, volume 122 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1988.
[18] I. Kramosil and J. Michalek. Fuzzy metrics and statistical metric spaces. Kybernetika (Prague), 11(5):336-344, 1975.
[19] K. Menger. Statistical metrics. Proc. Nat. Acad. Sci. U. S. A., 28:535{537, 1942.
[20] D. Mihet. On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8):915-921, 2007.
[21] V. Radu. Some  xed point theorems in probabilistic metric spaces. In Stability problems for stochastic models (Varna, 1985), volume 1233 of Lecture Notes in Math., pages 125-133. Springer, Berlin, 1987.
[22] V. Radu. Some suitable metrics on fuzzy metric spaces. Fixed Point Theory, 5(2):323-347, 2004.
[23] A. Sapena. A contribution to the study of fuzzy metric spaces. In Proceedings of the Third Italian-Spanish Conference of General Topology and its Applications (Murcia, 2000), volume 2, pages 63-76, 2001.
[24] B. Schweizer and A. Sklar. Statistical metric spaces. Paci c J. Math., 10:313-334, 1960.
[25] B. Schweizer and A. Sklar. Probabilistic metric spaces. North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York, 1983.
[26] V. M. Sehgal and A. T. Bharucha-Reid. Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory, 6:97-102, 1972.