Fuzzy soft bi-interior ideals over Γ−semirings

Document Type : Research Paper

Author

Department of Mathematics, University of GITAM SCHOOL OF TECHNOLOGY,City Visakhapatnam, Country India

Abstract

In this paper, we introduce the notion of fuzzy soft biinterior ideals over Γ−semirings and study some of their algebraical
properties.bi-interior ideal

Keywords


[1] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and applications, International Academic Press, USA (2007).
[2] C. G. Massouros, Methods of constructing hyper elds, Internat J. Math & Math. Sci., 8 (1985), 725-228.
[3] D. Stratigopoulos, Hyperanneaux non-commutatifs:le radical d'un hyperanneau, somme sous-directe des hyperanneaux Artiniens et thorie des elements idempotents, C.R.Acad.Sci.Paris, serie A, 269 (1969), 627-629.
[4] E. H. Moore, A doubly-in nite system of simple groups, in E. H. Moore; et al. (eds.), Mathematical Papers Read at the International Mathematics Congress Held in Connection with the World's Columbian Exposition, Macmillan & Co.,
(1896), 208-242.
[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed, Oxford, England: Clarendon Press (1979).
[6] J. Mittas, Hyperanneaux et certaines de leurs proprietes, C.R.Acad.Sc.Paris, serie A, 269 (1969), 623-626.
[7] J. Mittas, Sur les Hyperanneaux et les Hypercorps, Mathematica Balkanica: Beograd 3 (1973), 368-382.
[8] J. Mittas, Hyperanneaux Canoniques, Mathematica Balkanica: Beograd 2 (1972), 165-179.
[9] M. Iranmanesh, M. Jafarpour, H. Aghabozorgi and J.M. ZHAN, Classi cation of Krasner Hyper elds of Order 4, Acta. Math. Sin.-English Ser. 36 (2020), 889-902. https://doi.org/10.1007/s10114-020-8282-z.
[10] M. Krasner, A class of hyperrings and hyper elds, Internat. J. Math. and Math. Sci. 6 (1983), 307-312.
[11] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academical Publications: Dordrecht (2003).
[12] R. Ameri, M. Eyvazi and S. Hoskova-Mayerova, Advanced results in enumeration of hyper elds, AIMS Mathematics, 5 (2020), 6552-6579.
[13] S. Atamewoue, S. Ndjeya, L. Strungmann and C. Lele, Codes over hyper elds, Discussiones Mathematicae General Algebra and Applications, 37 (2017), 147-160.
[14] Sang-Cho Chung, Chemical Hyperstructures for Vanadium, Journal of the Chungcheng Mathematical Society 27 (2014), 309{317. DOI: 10.14403/jcms.2014.27.2.309.