[1] M. Abbas, B. Ali and S. Romaguera, Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory and Appl., 2013 (2013), 243.
[2] C. Alaca, D. Turkoglu, and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 29(5), (2006), 1073-1078.
[3] A. Branciari, A xed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. (Debr.) 57 (2000), 31-37.
[4] Z.K. Deng, Fuzzy pseudometric spaces, J. Math. Anal. Appl., 86 (1982) 74-95.
[5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389.
[6] V. Gregori and A. Sapena, On xed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245-252.
[7] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22(5) (2004), 1039-1046.
[8] Y. Shen, D. Qiu and W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Lett., 25 (2012), 138-141.
[9] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.
[10] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Appl., 2012 (2012), 94.