On pseudo-projective curvature tensor of sasakian manifold admitting zamkovoy connection

Document Type : Research Paper

Authors

1 Department of Mathematics, Raiganj Surendranath Mahavidyalaya, P.O.Box 733134,Raiganj, West Bengal, India

2 Department of Mathematics, Raiganj University P.O.Box 733134, Raiganj, West Bengal, India

Abstract

The purpose of the present paper is to study some properties of Sasakian manifolds with respect to Zamkovoy connection. Here, we study pseudo-projectively flat, quasi-pseudoprojectively flat and φ-pseudo-projectively flat Sasakian manifolds admitting Zamkovoy connection. Further, we study generalized pseudo-projective φ-recurrent Sasakian manifolds along with some more curvature properties of Sasakian manifolds with respect to Zamkovoy connection.

Keywords


[1] Blaga, A.M.: Canonical connection on Para Kenmotsu manifold, Novi Sad .J. Math, 45(2): 131-142 (2015).
[2] Biswas, A. and Baishya, K.K.: study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection,Bulletin of the Transilvania University of Brasov, 12(2): 233-246 (2020).
[3] Biswas, A. and Baishya, K.K.: A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Scienti c Studies and Research Series Math. and Inform., 29(1): 59-72 (2019).
[4] Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds Birkhauser, Boston, (2002).
[5] Das, A and Mandal, A.: Study of Ricci solitons on concircularly  at Sasakian manifolds admitting Zamkovoy connection, The Aligarh Bull. of Math., 39(2): 47-61 (2020).
[6] Mandal, A. and Das, A.: On M-Projective Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection, Adv. Math. Sci. J., 9(10): 8929-8940 (2020).
[7] Mandal, A. and Das, A.: Projective Curvature Tensor with respect to Zamkovoy connection in Lorentzian para Sasakian manifolds, J. Indones. Math. Soc., 26(3): 369-379 (2020).
[8] Mandal, A. and Das, A.: LP-Sasakian manifold equipped with Zamkovoy connection and conharmonic curvature tensor, J. Indones. Math. Soc., 27(2): 137-149 (2021).
[9] Mandal, A.: Zamkovoy connection on Lorentzian para-Sasakian manifolds, J. Adv. Math. Stud., 14(3): 420-430 (2021).
[10] Chaki, M.C. and Tarafdar, M., On a type of Sasakian Manifold, Soochow J. Math., 16(1): 23-28 (1990).
[11] Boyer, C. and Galicki, K.: 3-Sasakian manifolds, Surveys in Di erential Geometry, 7: 123-184 (1999).
[12] Hayden, H.A.: Subspaces of a space with Torsion, Proc. London Math. Soc., 34: 27-50 (1932).
[13] Martelli, D., Sparks, J. and Shing-Tung Yau.: Sasaki-Einstein Manifolds and Volume Minimization, Communications in Math. Phy., 280(3): 611-673 (2008).
[14] Nagarjuna, H.N. and Somashekhara, G.: On Pseudo Projective Curvature tensor in Sasakian Manifolds, Int. J. Contemp. Math. Sci., 6: 1319-1328 (2011).
[15] Narain, D., Prakash, A and Prasad, B.: A Pseudo Projective Curvature tensor on LP-Sasakian manifold, Analele Stiint ce Ale Universitati Al. i . Cuza" din Iasi (S.N.) Matematica, Tomul LV., 2: 275-284 (2009).
[16] Olszak, Z.: Certain property of the Ricci tensor on Sasakian manifolds, Collo. Math., 40(2): 235-237 (1978).
[17] Prasad, B.: On pseudo Projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc., 94 (3): 163-166 (2002).
[18] Sasaki, S.: On di erentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., 2: 459-476 (1960).
[19] Sasaki, S.: Lecture Notes on Almost contact manifolds, Tohoku Univ., 1(2): 1965.
[20] Shaikh, A.A. and Kundu, H.: On equivalency of various geometric structures, Journal of Geom., 105(1): 1-27 (2013).
[21] Tanno, S.: Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314: 349-379 (1989).
[22] Tripathi, M.M. and Gupta, P.: On  - curvature tensor in K-contact manifold and Sasakian manifold, International Electronic J. Math., 4: 32-47 (2011).
[23] Yano, K. and Kon, M.: Structures on manifolds, World Scienti c Publishing Co., (1984).
[24] Zamkovoy, S.: Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36(1): 37-60 (2008).