[1] Blaga, A.M.: Canonical connection on Para Kenmotsu manifold, Novi Sad .J. Math, 45(2): 131-142 (2015).
[2] Biswas, A. and Baishya, K.K.: study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection,Bulletin of the Transilvania University of Brasov, 12(2): 233-246 (2020).
[3] Biswas, A. and Baishya, K.K.: A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Scienti c Studies and Research Series Math. and Inform., 29(1): 59-72 (2019).
[4] Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds Birkhauser, Boston, (2002).
[5] Das, A and Mandal, A.: Study of Ricci solitons on concircularly at Sasakian manifolds admitting Zamkovoy connection, The Aligarh Bull. of Math., 39(2): 47-61 (2020).
[6] Mandal, A. and Das, A.: On M-Projective Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection, Adv. Math. Sci. J., 9(10): 8929-8940 (2020).
[7] Mandal, A. and Das, A.: Projective Curvature Tensor with respect to Zamkovoy connection in Lorentzian para Sasakian manifolds, J. Indones. Math. Soc., 26(3): 369-379 (2020).
[8] Mandal, A. and Das, A.: LP-Sasakian manifold equipped with Zamkovoy connection and conharmonic curvature tensor, J. Indones. Math. Soc., 27(2): 137-149 (2021).
[9] Mandal, A.: Zamkovoy connection on Lorentzian para-Sasakian manifolds, J. Adv. Math. Stud., 14(3): 420-430 (2021).
[10] Chaki, M.C. and Tarafdar, M., On a type of Sasakian Manifold, Soochow J. Math., 16(1): 23-28 (1990).
[11] Boyer, C. and Galicki, K.: 3-Sasakian manifolds, Surveys in Di erential Geometry, 7: 123-184 (1999).
[12] Hayden, H.A.: Subspaces of a space with Torsion, Proc. London Math. Soc., 34: 27-50 (1932).
[13] Martelli, D., Sparks, J. and Shing-Tung Yau.: Sasaki-Einstein Manifolds and Volume Minimization, Communications in Math. Phy., 280(3): 611-673 (2008).
[14] Nagarjuna, H.N. and Somashekhara, G.: On Pseudo Projective Curvature tensor in Sasakian Manifolds, Int. J. Contemp. Math. Sci., 6: 1319-1328 (2011).
[15] Narain, D., Prakash, A and Prasad, B.: A Pseudo Projective Curvature tensor on LP-Sasakian manifold, Analele Stiint ce Ale Universitati Al. i . Cuza" din Iasi (S.N.) Matematica, Tomul LV., 2: 275-284 (2009).
[16] Olszak, Z.: Certain property of the Ricci tensor on Sasakian manifolds, Collo. Math., 40(2): 235-237 (1978).
[17] Prasad, B.: On pseudo Projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc., 94 (3): 163-166 (2002).
[18] Sasaki, S.: On di erentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., 2: 459-476 (1960).
[19] Sasaki, S.: Lecture Notes on Almost contact manifolds, Tohoku Univ., 1(2): 1965.
[20] Shaikh, A.A. and Kundu, H.: On equivalency of various geometric structures, Journal of Geom., 105(1): 1-27 (2013).
[21] Tanno, S.: Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314: 349-379 (1989).
[22] Tripathi, M.M. and Gupta, P.: On - curvature tensor in K-contact manifold and Sasakian manifold, International Electronic J. Math., 4: 32-47 (2011).
[23] Yano, K. and Kon, M.: Structures on manifolds, World Scienti c Publishing Co., (1984).
[24] Zamkovoy, S.: Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36(1): 37-60 (2008).