[1] D.B. Hunter, Some Gauss-type formulae for the evaluation of Cauchy principle values of integrals, Numer. Math. 19 (1972), 419–424.
[2] D.F. Paget, D. Elliott, An algorithm for the numerical evaluation of certain Cauchy principle values of integrals, Numer. Math. 19 (1972), 373–385.
[3] C. K. Lu, The approximate of Cauchy type integral by some kinds of interpolatory splines, J. Approx. Theory. 36 (1982), 197–212.
[4] S. Krenk, Numerical quadrature of periodic singular integral equations, J. Inst. Math. Appl. 21 (1978), 181–187.
[5] A. Pedas, E. Tamme, Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels,
J. Comput. Appl. Math. 213 (2008), 111–126.
[6] X. Jin, L. M. Keer, Q. Wang, A practical method for singular integral equations of the second kind, Eng. Fracture Mech. 206 (2007), 189–195.
[7] J. Du, On the numerical solution for singular integral equations with Hilbert kernel, Chin. J. Numer. Math. Appl. 11 (2) (1989), 9–27.
[8] Z. Chen, Y.F. Zhou, A new method for solving Hilbert type singular integral equations, Appl. Math. Comput. 218 (2011), 406–412.
[9] H. Du, J.H. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl. 348 (2008), 308–314.
[10] S. Y. Kang, I. Koltracht, G. Rawitscher,Nystrom-Clenshaw-Curtis quadrature for integral equations with discontinuous kernels, Math. Comput. 72 (242) (2003),729–756.
[11] Yan Xuan, Fu-Rong Lin, Numerical methods based on rational variable substi-tution for Wiener-Hopf equation of the second kind, Appl. Math. Comput. 236 (2012), 3528–3539.
[12] G.A. Chandler, I.G. Graham, The convergence of Nystrom methods for Wiener-Hopf equations, Numer. Math. 2 (52) (1988), 345–364.
[13] I.G. Graham, W.R. Mendes, Nystrom-product integration for Wiener-Hopf equa-tions with applications to radiative transfer, IMA J. Numer. Anal. 9 (1989),261–284.
[14] G. Mastroianni, G. Monegato, Nystrom interpolants based on zeros of Laguerre polynomials for some Wiener-Hopf equations, IMA J. Numer. Anal. 17 (1997),621–642.
[15] M. G. Cui, Y. Z. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science PubInc. Hauppauge, (2009).
[16] F. Z. Geng, M. G. Cui, Solving a nonlinear system of second order boundary value problems, J. Math. Appl. 327(2007), 1167–1181.
[17] X.Y. Li, B.Y. Wu, A continuous method for nonlocal functional differential equa-tions with delayed or advenced arguments, Mathematical Analysis and Applica-tions, 409 (2014), 485–493.
[18] X.Y. Li, B.Y. Wu, Error estimation for the reproducing kernel method to solve linear boundary value problems, Computational and Applied Mathematics, 243 (2013), 10–15.
[19] F.Z. Geng, S.P. Qian, S. Li,A numerical method for singularly perturbed turning point problems with an interior layer, 255(2014), 97–105.
[20] Hong Du, Minggen Cui, Representation of the exact solution and a stability analysis on the Fredholm integral equation of the first kind in reproducing kernel space, Appl. Math. Comput. 182 (2) (2006), 1608–1614.
[21] M. Cui, Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science, (2008).