[1] A. Ben-Israel, D. Cohen, On iterative computation of generalized inverses and associated projections, SlAM J. Numer. Anal. 3 (1966), 410–419.
[2] A. Ben-Israel, T.N.E. Greville, Generalized Inverses, Second ed., New York:Springer (2003).
[3] R.L. Burden, J.D. Faires, Numerical Analysis, 9th Ed. Brooks/Cole, Cengage Learning, Boston (2011).
[4] H. Chen, Y. Wang, A family of higher-order convergent iterative methods for computing the Moore-Penrose inverse, Appl. Math. Comput. 218 (2011), 4012–4016.
[5] A. Cichocki, B. Unbehauen, Neural networks for optimization and signal pro-cessing, New York: John Wiley & Sons (1993).
[6] E.V. Krishnamurthy, S.K. Sen, Numerical Algorithms: Computations in Science and Engineering, New Delhi, India: Affiliated East-West Press (1986).
[7] W. Li, Z. Li, A family of iterative methods for computing the approximate in-verse of a square matrix and inner inverse of a non-square matrix, Appl. Math.Comput. 215 (2010), 3433–3442.
[8] H. B. Li, T.Z. Huang, Y. Zhang, X.P. Liu, T.X. Gu, Chebyshev-type methods and preconditioning techniques, Appl. Math. Comput. 218 (2001), 260–270.
[9] S. Miljkovi´c, M. Miladinovi´c, P., Stanimirovi´c, I. Stojanovi´c, Application of the pseudo-inverse computation in reconstruction of blurred images, Filomat 26 (2012), 453–465.
[10] H.S. Najafi, M.S. Solary, Computational algorithms for computing the inverse of a square matrix, quasi-inverse of a non-square matrix and block matrices, Appl. Math. Comput. 183 (2006), 539–550.
[11] V.Y. Pan, R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix with applications, SIAM J. Sci. Stat. Comput. 12 (1991), 1109–1131.
[12] V.Y. Pan, Newton’s iteration for matrix inversion, advances and extensions, ma-trix methods: theory algorithms and applications, Singapore: World Scientific (2010).
[13] W.H. Pierce, A self-correcting matrix iteration for the Moore-Penrose inverse,Linear Algebra Appl. 244 (1996), 357-363.
[14] P. Roland, P.G. Beim, Inverse problems in neural field theory, SIAM J. Appl. Dynam. Sys. 8 (2009), 1405–1433.
[15] G. Schulz, Iterative Berechmmg der reziproken Matrix, Z. Angew. Math. Mech.13 (1933), 57–59.
[16] L. Sciavicco, B. Siciliano, Modelling and control of robot manipulators, London:Springer–Verlag (2000).
[17] X. Sheng, G. Chen: The generalized weighted Moore-Penrose inverse, J. Appl.Math. Comput. 25 (2007), 407–413.
[18] F. Soleymani, P.S. Stanimirovi´c, A Higher Order Iterative Method for Computing the Drazin Inverse, The Scientific World Journal Volume 2013, Article ID 708647,11 pages, http://dx.doi.org/10.1155/2013/708647.
[19] F. Soleymani, P.S. Stanimirovi´c, M.Z. Ullah, An accelerated iterative method for computing weighted Moore-Penrose inverse, Appl. Math. Comput. 222 (2013),365–371.
[20] F. Soleymani, H. Salmani, M. Rasouli, Finding the Moore-Penrose inverse by a new matrix iteration, J. Appl. Math. Comput. 47 (2015), 33-48.
[21] S. Srivastava, D.K. Gupta, A higher order iterative method for A(2)T ,S, J. Appl.Math. Comput. 46 (2014), 147–168.
[22] P.S. Stanimirovi´c, D.S. Cvetkovi´c-Ili´c, Successive matrix squaring algorithm for computing outer inverses, Appl. Math. Comput. 203 (2008), 19–29.
[23] F. Toutounian, F. Soleymani, An iterative method for computing the approximate inverse of a square matrix and the Moore-Penrose inverse of a non-square matrix, Appl. Math. Comput. 224 (2013), 671–680.
[24] L. Weiguo, L. Juan, Q. Tiantian, A family of iterative methods for computing Moore-Penrose inverse of a matrix, Linear Algebra Appl. 438 (2013), 47-56.