Fundamental pseudo BCK-algebras

Document Type : Research Paper

Authors

1 Department of Mathematics, Shahid Chamran University of Ahvaz, P.O.Box 61357- 83151, Ahvaz, Iran

2 Department of Mathematics, Shahid Beheshti University, P.O.Box 1983969411, Tehran, Iran

3 Department of Mathematics, Payame Noor University of Tehran, P.O.Box 1659639884,Tehran, Iran

Abstract

In this paper, we de ne the relations   and   on hyper pseudo BCK-algebras and investigate some related properties. We give a necessary and sucient condition for   to be regular. By us- ing  , we make the quotient hyper pseudo BCK-algebra. Finally, by applying the concept of fundamental on pseudo BCK-algebra, we prove that any pseudo BCK-algebra is fundamental.

Keywords


[1] R.A. Borzooei, A. Rezazadeh and R. Ameri, On hyper pseudo BCK-algebra, Iranian Journal of Mathematical Sciences and Informatics, 9(1) (2014), 13-29.
[2] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Aca-demic Publication, 2003.
[3] P. Corsini, Prolegomena of Hypergroup theory (Second Edition), Aviani Editor,1993.
[4] A. Dvurecenskij, On Pseudo MV -algebras, Soft Computing 5 (2001), 347-354.
[5] G. Georgescu and A. Iorgulescu, Pseudo BCK-algebra: an extension of BCK-algebra. In Proceeding of DMTCS 01: Combinatorics, Computability and Logic,Springer, London (2001), 97-114.
[6] J. Halas, Deductive systems and annihilators of pseudo BCK-algebra. Italian Journal of Pure and Applied Mathematics, 25 (2009), 83-94.
[7] H. Harizavi, T. Koochakpoor and R.A. Borzooei, Hyper Pseudo BCK-Algebras with condition (S) and (P), Malaysian Journal of Mathematical Sciences. 8(1)(2014), 87-108.
[8] H. Harizavi, T. Koochakpoor and R.A. Borzooei, Quotient Hyper Pseudo BCK-Algebras, General Algebra and Application. 33(2) (2013), 147-165.
[9] Y. Imai and K. Is´eki, On Axiom System of Prepositional Calculi, XIV. Proc Japan Acad, 42 (1966), 26-29.
[10] Y.B. Jun, M.M. Zahedi, X.L. Xin and R.A. Borzooei, On Hyper BCK-algebra, Italian Journal of Pure and Applied Mathematics, 10 (2000), 127-136.
[11] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm, (1934), 45-49.
[12] C. Pelea, On the fundamental relation of a multialgebra, Ital. J. Pure Appl. Math.10 (2001), 141-146.
[13] Feng. Yuming and Li. Benxiu, Generalized Hyperoperations Defined on Topo-logical Space, Journal of Discerete Mathematical Sciences and Cryptography, 18 (2015), 195-200.
[14] Feng.Yuming and P.Corsini,On fuzzy Corsini’s Hyperoperations,Journal of Applied Mathematics,Volume,2012(2o12),1-9.
[15] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc,1994.