The connection of hyper lattice implication algebras and related hyper algebras

Document Type : Research Paper

Author

Shahid Bahonar University of Kerman

Abstract

In this paper, we de ne the concepts of (good) con- gruences and strong congruences on hyper lattice implication alge- bras and use them to construct quotient hyper lattice implication algebras. We describe the relations between hyper lattice implica- tion algebra and hyper MV-algebra, hyper K-algebra, (weak) hyper residuated lattices.

Keywords


[1] R. A. Borzoei, A. Hasankhani and M. M. Zahedi, On hyper K-algebra, Math. Japonica, 52 (2000), 113-121.
[2] R. A. Borzooei, M. Bakhshi and O. Zahiri, Filter theory on hyper residuated lattices Quasigroups and Related Systems, 22 (2014), 33 - 50.
[3] R. A. Borzooei and S. Niazian, Weak hyper residuated lattices, Quasigroups and Related Systems, 21 (2013), 29 - 42.
[4] P. Corsini and V. Leoreanu, Applications of hyperstructures theory, Adv in Math, Kluwer Acad Publ, 2003.
[5] B. Davvaz, Polygroup theory and related systems. World Scientific, 2013.
[6] S. Ghorbani, A. Hasankhani and E. Eslami, Hyper MV -algebras ,Set-Valued Mathematics and Aplications,1(2008)205-222.
[7] S. Ghorbani, A. Hasankhani and E. Eslami, Quotient hyper MV-algebras, Sci. Math.e Japon., 3 (2007), 371-386.
[8] S. Ghorbani, Hyper lattice implication algebras and some of their characteriza-tions, to appear.
[9] F. Marty, Sur une generalization de la notion de groupe, in Proceedings of the 8th Congress des Mathematiciens Scandinaves, Stockholm, Sweden, (1934), 45 - 49.
[10] J. Mittas, M. Konstantinidou, Sur une nouvelle generalisation de la notion de treillis. Les supertreillis et certaines de leurs proprietes generales, Ann. Sci. Univ. Blaise Pascal (Clermont II), Ser. Math. Fasc. 25 (1989), 61 - 83.
[11] S. Rasouli and B. Davvaz, Lattices Derived from Hyperlattices, Commun. Alge-bra, 38 (2010), 2720-2737.