Intuitionistic fuzzy soft hyperalgebras

Document Type : Research Paper

Authors

1 Department of Computer Engineering, Istanbul Geliim University, 34315 Istanbul, Turkiye

2 Y?ld?z Technical University

3 Yildiz Technical University

Abstract

This study introduces the idea of intuitionistic fuzzy soft hyperalgebra. First, intuitionistic fuzzy soft hyperalgebra is
defined and this definition is supported with an example. A level soft set is formed over a hyperalgebra of an intuitionistic fuzzy soft set. The relation between soft hyperalgebras and intuitionistic fuzzy soft hyperalgebras is given.
Finally, intuitionistic fuzzy soft hyperalgebra homomorphism is established and demonstrated if the image and inverse image of an intuitionistic fuzzy soft hyperalgebra are both intuitionistic fuzzy soft hyperalgebras under homomorphism.

Keywords


[1] R. Ameri and T. Nozari, A new characterization of fundamental relation on hy-perrings, International Journal of Contemporary Mathematical Sciences, 5(13-16) (2010), 721–738.
[2] R. Ameri and T. Nozari, Fuzzy hyperalgebras, Computers and Mathematics with Applications, 61 (2011) 149–154.
[3] K. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1) (1986),87–96.
[4] P. Corsini, Prolegomena of hypergroup theory, Mat. Pura Appl. Aviani Editore,Tricesimo (1993).
[5] B. Davvaz and I. Cristea, Fuzzy algebraic hyperstructures: An introduction, Stud-ies in Fuzziness and Soft Computing , 321. Cham: Springer, (2015).
[6] B. Davvaz and V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, Palm Harbor, Fla, USA (2007).
[7] B. Davvaz and A. Salasi, A realization of hyperrings, Communications in Algebra,34(12) (2006), 4389–4400.
[8] V. Leoreanu, F. Feng and J. Zhan, Fuzzy soft hypergroups, International Journal of Computer Mathematics, 89(8) (2012), 963–974.
[9] P.K. Maji, R. Biswas and A.R. Roy, Intuitionistic fuzzy soft sets, J. Fuzzy Math.,9 (2001), 677–692.
[10] F. Marty, Sur une generalization de la notion de group, Proceedings of the 8th Congres Math. Scandinaves, Stockholm, Sweden, (1934), 45–49.
[11] J. Mittas, Hypergroupes canoniques, Mathematica Balkanica, 2 (1972), 165–179.
[12] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999),19–31.
[13] J.N. Mordeson and M.S. Malik, Fuzzy commutative algebra, Word. Publ., (1998).
[14] T. Nozari and R. Ameri, Fuzzy soft hyperalgebras, Journal of Intelligent & Fuzzy Systems, 37 (2019), 5179–5186.
[15] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Mono-graphs in Mathematics.
[16] L.A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.
[17] P. Corsini and V. Leoreanu-Fotea, Applications of Hyperstructure Theory, Advances in Mathematics. Kluwer Academic, Dordrecht (2003).
[18] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(3) (1971), 512–517.
[19] P. Corsini and I. Tofan, On fuzzy hypergroups, Pure Math. Appl., 8 (1997), 29–37.
[20] A. Kehagias, L-fuzzy join and meet hyperoperations and the associated L-fuzzy hyperalgebras, Rend. Circ. Mat. Palermo, 51 (2002), 503–526.
[21] K. Serafimidis, A. Kehagias and M. Konstantinidou, The L-fuzzy Corsini join hyperoperation, Ital. J. Pure Appl. Math., 12 (2002), 83–90.
[22] M.K. Sen, R. Ameri and G. Chowdhury, Fuzzy hypersemigroups, Soft Comput.,12 (2008), 891–900.
[23] S. Yamak, O. Kazanci and B. Davvaz, Soft hyperstructures, Comput. Math.Appl., 62 (2011), 797–803.
[24] V. Leoreanu-Fotea, B. Davvaz, Fuzzy hyperrings, Fuzzy Sets and Systems, 160(2008), 2366–2378.
[25] B. Davvaz, Intuitionistic fuzzy hyperideals in semihypergroups, Bull. Malays.Math. Sci. Soc., 29(1) (2006), 203–207.