Quasi-Partial Branciari b-Metric Spaces and fixed point results with an application

Document Type : Research Paper

Authors

1 Department of Mathematics, Govt. Polytechnic College Mandsaur, M.P., India

2 Department of computer science, Shri Vaishnav Institute of Management, Indore, India

Abstract

The main aim of this research paper is to introduce concept of quasi-partial Branciari b-metric space. Such spaces are
an extension of quasi-partial metric spaces, quasi-partial b-metric spaces and quasi-partial Branciari metric spaces. In this article,firstly, Conditions for the existence and uniqueness of fixed points in underlying spaces are discussed and related theorems are proved.After that various consequences of these theorems are given and specific examples are presented. Final 

Keywords


[1] B. N. Abagaro, K. T. Kidane and A. M. Mustefa, Fixed point theorems for gen-eralized (α, ψ)-contraction mappings in rectangular quasi b-metric space, Fixed Point Theory and Algorithms, (2022) 2022, 13.
[2] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Mathematica Slovaka,2013.
[3] Altumi and A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Applications, 12(2011), 1-10.
[4] H. Aydi, M. F. Bota, E. Karapinar and S. Moradi, A Common fixed point for weak φ-contractions on b-metric spaces, Fixed Point Theory, 13(2012), 337-346.
[5] H. Aydi, M. F. Bota, E. Karapinar and S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory and Applications, 88(2012).
[6] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae, 3(1)(1922), 133181.
[7] I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Func-tional Analysis, 30(1989), 26-37.
[8] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57(2000), 3137.
[9] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
[10] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semi. Mat. Univ. Modena, 46(1998), 263-276.
[11] E. Karapinar, I. M. Erhan and A. Ozturk, Fixed point theorems on quasi partial metric spaces, Math. Comput. Model, 57(2013), 2442-2448.
[12] A. Gupta and P. Gautam, Quasi-partial b-metric space and same related fixed point theorems, Fixed Point Theory and applications, 2015(2015), 18.
[13] R. George, S. Radenovic, K. P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl., 8(6) (2015), 10051013.
[14] K. Sarkar Rectangular partial b-metric space, J. Math. Comput. Sci., 10(6)(2020),2754-2768.
[15] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr J. Math.,11(2014), 703-711.
[16] J. Tiwari, D. K. Sharma, Common coincidence and fixed points for several func-tions in b- metric spaces, Journal of hyperstructures, 11(1) 2022, 115-29.
[17] J. Tiwari, D. K. Sharma, Existence and uniqueness of new fixed points of (ψ, φ) contractions in rectangular metric space, South east Asian J. of Mathematics and Mathematical Sciences, 3(2021), 241-252.
[18] J. Zhou, D. Zhang and G. Zhang, Fixed point theorems in partial b-metric spaces,Applied Mathematical Sciences, 12(2018), 13, 617-624.