[1] A. Alidadi, A. Parsian and H. Arianpoor, The minimum Sombor index for uni-cyclic graphs with fixed diameter, MATCH Commun. Math. Comput. Chem., 88(2022), 561–572.
[2] M. F. Ashby, The properties of foams and lattices, Philos. Transact. A Math.Phys. Eng. Sci., 364 (2005), 15–30.
[3] K. C. Das, A. S. C¸ evik, I. N. Cangul, and Y. Shang, On Sombor index, Symmetry,13 (2021), 1–12.
[4] H. Deng, S. Balachandran, S. K. Ayyaswamy, and Y. B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discret. Appl. Math.,161 (2013), 2740–2744.
[5] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer., 60 (1987), 187–197.
[6] I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004), 83–92.
[7] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16.
[8] I. Gutman, Some basic properties of Sombor indices, Open J. Discret. Appl.Math., 4 (2021), 1-3.
[9] I. Gutman, B. Ruˇsˇci´c, N. Trinajsti´c, J. L. Wilcox, Jr., Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (9) (1975), 3399–3405.
[10] I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538.
[11] F. Harary, Graph Theory, New Delhi: Narosa Publishing House (1998).
[12] Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs with small-est and greatest zeroth order general Randi´c index, MATCH Commun. Math.Comput. Chem., 54 (2005), 425–434.
[13] L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Re-search, New York: Academic Press (1976).
[14] L. B. Kier and L. H. Hall, Molecular Connectivity in Structure Activity Analysis,New York: Wiley (1986).
[15] X. Li and Y. Shi, A survey on the Randi´c index, MATCH Commun. Math.Comput. Chem., 59 (2008), 127–156.
[16] B. Liu and I. Gutman, On general Randi´c indices, MATCH Commun. Math.Comput. Chem., 58 (2007), 147–154.
[17] B. Liu and Z. You, A survey on comparing Zagreb indices, MATCH Commun.Math. Comput. Chem., 65 (2011), 581–593.
[18] S. Nikoli´c, G. Kovaˇcevi´c, A. Miliˇcevi´c, and N. Trinajsti´c, The Zagreb indices 30 years after, Croat. Chem. Acta., 76 (2003), 113–124.
[19] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, New York: Wiley (1991).
[20] B. N. Onagh, The harmonic index of subdivision graphs, Trans. Comb., 6 (2017),15–27.
[21] M. Randi´c, M. Noviˇc, and D. Plavˇsi´c, Solved and unsolved problems in structural chemistry, Boca Raton: CRC Press (2016).
[22] C. Pan, Y. Han and J. Lu, Design and optimization of lattice structures: a review, Appl. Sci., 10 (2020), 63–74.
[23] H. S. Ramane, I. Gutman, K. Bhajantri, and D. V. Kitturmath, Sombor index of some graph transformations, Commun. Comb. Optim., 8 (2023), 193–205.
[24] M. Randi´c, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609–6615.
[25] M. Randi´c, On history of the Randi´c index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem., 59 (2008), 5-124.
[26] M. Randi´c, The connectivity index 25 years after, J. Mol. Graph. Model., 20 (2001), 19–35.
[27] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, New York:Wiley-VCH (2000).
[28] X. Xu, Relationships between harmonic index and other topological indices, Appl.Math. Sci., 6 (2012), 2013–2018.
[29] C. Yan, L. Hao, A. Hussein, S. L. Bubb, P. Young, and D. Raymont, Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, J. Mater. Process. Technol., 214 (2014), 856–864.
[30] L. Zhong, The harmonic index for graphs, Appl. Math. Lett., 25 (2012), 561–566.
[31] L. Zhong, The harmonic index on unicyclic graphs, Ars Comb., 104 (2012),261–269.
[32] L. Zhong and K. Xu, The harmonic index for bicyclic graphs, Util. Math., 90(2013), 23–32