Convergence of Panigrahy iteration process for Suzuki generalized nonexpansive mapping in uniformly convex Banach space

Document Type : Research Paper

Authors

1 Department of Mathematics, Babu Pandhri Rao Kridatt Govt.College Silouti, Dhamtari, Raipur(C.G.), India

2 Principal, Govt. J.Y. Chhattisgarh College, Raipur, India

Abstract

In this paper, we establish strong and weak convergence theorems for Suzuki's generalized nonexpansive mapping in uniformly convex Banach spaces using the iterative scheme introduced by Panigrahy et al [9]. Next, we see an example of Suzuki's generalized nonexpansive mapping, which is not a nonexpansive mapping. Using this example and some numerical tests, we infer empirically that the Panigrahy iteration process converges faster than the Krasnoselskij, Thakur, and M-iteration processes.

Keywords

Main Subjects


[1] A. A. Mebawondu, and O.T. Mewomo, Fixed point results for a new three steps iteration process, Annals of the University of Craiova, Mathematics and Computer Science Series, 46, no.2, (2019), 298-319.
[2] A. Aghanians, K. Fallahi, and K. Nourouzi, Fixed points for G-contractions on uniform spaces endowed with a graph, Fixed Point Theory Appl., (2012), 2012, 182.
[3] B. S. Thakur, D. Thakur, and M. Postolache, A new iterative scheme for numerical reckoning  xed points of Suzukis generalized nonexpansive mappings, App. Math. Comp., 275 (2016), 147-155.
[4] F. Gursoy, and V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, (2014) arXiv:1403.2546v2.
[5] H. F. Senter, and W. G. Dotson, Approximating  xed points of nonexpansive mappings, Proc. Am. Math. Soc., 44, no.2, (1974), 375-380.
[6] J. Schu, Weak and strong convergence to  xed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43, no.1, (1991),153-159.
[7] J. B. Diaz, and F.T. Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Am. Math. Soc., 73, (1967), 516-519.
[8] K. Goebel, and W. A. Kirk, Topic in metric  xed point theory, Cambridge University Press, (1990).
[9] K. Panigrahy, and D. Mishra, A note on a faster- xed point iterative method, The Journal of Analysis, (2022), DOI: https://doi.org/10.1007/s41478-022-00485-z.
[10] K. Ullah, and M. Arshad, Numerical reckoning  xed point for Suzuki generalized nonexpansive mappings via new iteration process, Filomat, 32, no.1, (2018), 187-196.
[11] M.A.Krasnoselskij, Two remarks on the method of successive approximations (Russian) , Uspehi Mat. Nauk., 10, no.1, (1955), 123-127.
[12] O. Sahu, and A. Banerjee, Convergence Results for Mean Nonexpansive Mappings in Uniformly Convex Banach Space, Creat. Math. Inform., 32, no.2, (2023), 219-227.
[13] S. Hassan, M. De la Sen, P.Agarwal, Q. Ali, and A. Hussain, A New Faster Iterative Scheme for Numerical Fixed Points Estimation of Suzukis Generalized Nonexpansive Mappings, Math. Probl. Eng., (2020), Article ID 3863819, 9 pp. 
[14] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, (1974), 147-150.
[15] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340, (2008), 1088-1095.
[16] W.R.Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4,(1953), 506-510.
[17] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73, no.4, (1967), 591-598.