Computing some bond additive indices of certain class of nanostructures

Document Type : Research Paper

Authors

1 Bishop Chulaparambil Memorial College, Kottayam_x000D_ Kerala, India

2 Department of Mathematics, Bishop Chulaparambil Memorial College, Kottayam, India

3 Department of Mathematics, Bishop Chulaparambil Meomorial College, Kottayam, India

Abstract

Carbon nanosheets are nanomaterials consisting of two-dimensional circular arrangements of carbon atoms with diameters. A C4C8 nanosheet is a lattice obtained from a trivalent arrangement of carbon atoms into alternating squares C4 and octagons C8. T1UC4C8[p, q] and T2UC4C8[p, q] are two types of nanosheets made by C4C8 decorations. In nanotechnology, topological indices are used to quantify the structural properties of nanoparticles. In this paper, we investigate the application of topological indices, specifically weighted Mostar indices, to characterize the structures of nanosheets. We employ a variant of the cut method to determine explicit expressions for the additively weighted Mostar index and multiplicatively weighted Mostar index for T1UC4C8[p, q] and T2UC4C8[p, q] nanosheets.

Keywords

Main Subjects


[1] L. Alex. I. Gopalapillai. On a conjecture on edge Mostar index of bicyclic graphs. Iran. J. Math. Chem., 14(2)  (2023), 97-108.
[2] L. Alex, I.Gutman. On the inverse Mostar index for molecular graphs. Trans. Combi., 14(1) (2024), 65-77. doi: 10.22108/toc.2024.139474.2115.
[3] L. Alex, G. Indulal. On the inverse mostar index problem for chemical trees and unicyclic graphs. Palest. J. Math., (2024), In Press.
[4] L. Alex and G. Indulal. Sharp bounds on additively weighted Mostar index of cacti. Commun. Combi. Opti., (2024), In Press. doi: 10.22049/cco.2024.28757.1702.
[5] L. Alex, I. Gopalapillai, and J. Mulloor. On the inverse problem of some bond additive indices. Commun. Combi. Opti., (2024), -. doi: 10.22049/cco.2024.29470.2019
[6] A. Ali, T. Doslic. Mostar index: Results and perspectives. Appl. math. comput., 404:126245, (2021).
[7] A. Alsinai, B. Basavanagoud, M Sayyed, and MR Farahani. Sombor index of some nanostructures. J. Prime Res. Math., 17(2) (2021), 123-133.
[8] M. Arockiaraj, J. Clement, N. Tratnik, S. Mushtaq, and K Balasubramanian. Weighted Mostar indices as measures of molecular peripheral shapes with applications to graphene, graphyne and graphdiyne nanoribbons. SAR QSAR Environ Res., 31(3) (2020), 187-208.
[9] Micheal Arockiaraj, Joseph Clement, and Niko Tratnik. Mostar indices of carbon nanostructures and circumscribed donut benzenoid systems. Int. J. Quantum Chem., 119(24) (2019), e26043.
[10] M. Arockiaraj, S. Klavzar, S. Mushtaq, and K. Balasubramanian. Distance-based topological indices of nanosheets, nanotubes and nanotori of sio2. J. Math. Chem., 57 (2019), 343-369.
[11] S. Brezovnik, N. Tratnik. General cut method for computing Szeged-like topological indices with applications to molecular graphs. Int. J. Quantum Chem., 121(6) (2021), e26530.
[12] T. Doslic, I. Martinjak, R. Skrekovski, S. Tipuric Spuzevic, and I. Zubac. Mostar index. J. Math. Chem., 56 (2018), 29953013.
[13] W. Gao, MR Rajesh Kanna, E. Suresh, and M. R. Farahani. Calculating of degree-based topological indices of nanostructures. Geol. ecol. landsc., 1(3) (2017),173-183.
[14] S. Hayat, S. Khan, A. Khan, and M. Imran. Distance-based topological descriptors for measuring the electronic energy of benzenoid hydrocarbons with applications to carbon nanotubes. Math. Methods Appl. Sci., (2020).
[15] M. Imran, R. Ismail, M. Azeem, M. Kamran Jamil, and EH Abdullatif Al-Sabri. Sombor topological indices for di erent nanostructures. Heliyon, 9(10) (2023).
[16] M. Imran, M.A. Malik, M. Aqib, G.I Hina Aslam, and A. Ali. On Zagreb coindices and Mostar index of tio2 nanotubes. Scienti c reports, 13(1) (2023), 13672.
[17] G. Indulal, L. Alex,and I. Gutman. On graphs preserving PI index upon edge removal. J. Math. Chem., 59(7) (2021), 1603-1609.
[18] ] S. Klavzar, I. Gutman and B. Mohar, Labeling of benzenoid systems which re ects the vertexdistance relations, J. Chem. Inf. Comput. Sci. 35 (1995) 590-593.
[19] S. Klavzar, M.J Nadja -Arani. Cut method: update on recent developments and equivalence of independent approaches. Curr. Org. Chem., 19(4) (2015),348-358.
[20] H. Liu, L. Song, Q. Xiao, and Z. Tang. On edge Mostar index of graphs. Iran. J. Math. Chem., 11(2) (2020), 95-106.
[21] S. Rai, B. Deb, Z. Raza, and S. Mondal. Extremal topological indices of some nanostructures. Heliyon, 9(11) (2023).
[22] T. Reti, A. Ali, and I. Gutman. On bond-additive and atoms-pair-additive indices of graphs. Electron. J. Math., 2 (2021), 5261.
[23] N. Soleimani, M.J. Nikmehr, and H. A. Tavallaee. Computation of the di erent topological indices of nanostructures. (2015).
[24] A. Ullah, S. Zaman, A. Hamraz, and M. Muzammal. On the construction of some bioconjugate networks and their structural modeling via irregularity topological indices. Eur Phys J E, 46(8) (2023), 72.  
[25] H Van de Waterbeemd, RE Carter, G Grassy, H Kubinyi, YC Martin, MS Tute, and P Willett. Glossary of terms used in computational drug design (iupac recommendations 1997). Pure Appl. Chem. , 69(5) (1997), 1137-1152.
[26] Y. Wang, S. Yousaf, A.A Bhatti, and A. Aslam. Analyzing the expressions for nanostructures via topological indices. Arab. J. Chem., 15(1):103469, (2022).
[27] S. Zaman, M. Jalani, A. Ullah, M. Ali, and T. Shahzadi. On the topological descriptors and structural analysis of cerium oxide nanostructures. Chemical Papers, 77(5) (2023), 29172922.