On generalized Berwald manifolds with relatively isotropic Landsberg curvature

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran

Abstract

The class of generalized Berwald metrics contains the class of Berwald metrics as a special case. Let F= αΦ(s), s=β/α, be a generalized Berwald (α, β)-metric on manifold M. We show that F has vanishing S-curvature  S=0 and is of relatively isotropic Landsberg curvature  L+ cFC=0 if and only if B=0, where c=c(x) is a scalar function on M.

Keywords

Main Subjects


[1] D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S3, J. London. Math. Soc. 66(2002), 453-467.
[2] G. Chen, Q. He and S. Pan, On weak Berwald ( ;  )-metrics of scalar  ag curvature, J. Geom. Phy. 86(2014), 112-121.
[3] X. Cheng, The ( ;  )-metrics of scalar  ag curvature, Di er. Geom. Appl, 35(2014), 361-369.
[4] X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169(2009), 317-340.
[5] M. Faghfouri and N. Jazer, Shen's L-Process on the Chern Connection, J. Finsler Geom. Appl. 4(1) (2023), 12-22.
[6] B. Li and Z. Shen, On a class of weakly Landsberg metrics, Sci. China, Series A: Math. 50(2007), 75-85.
[7] Z. Shen, Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27(2006), 73-94.
[8] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128(1997), 306-328.
[9] Z. I. Szabo, Generalized spaces with many isometries, Geometria Dedicata, 11(1981), 369-383.
[10] Sz. Szakal and J. Szilasi, A new approach to generalized Berwald manifolds I, SUT J. Math. 37(2001), 19-41.
[11] A. Tayebi and M. Barzegari, Generalized Berwald spaces with ( ;  )-metrics, Indagationes. Math. (N.S.). 27 (2016), 670-683.
[12] A. Tayebi and F. Eslami, On a class of generalized Berwald manifolds, Publ. Math. Debrecen, 105(2024), 379-402.
[13] A. Tayebi and M. Ra e. Rad, S-curvature of isotropic Berwald metrics, Sci. China. Series A: Math. 51(2008), 2198-2204.
[14] C. Vincze, On Randers manifolds with semi-symmetric compatible linear connections, Indagationes. Math. (N.S.). 26(2015), 363-379.
[15] C. Vincze, T. R. Khoshdani, S. M. Z. Gilani, and M. Olah, On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach, Commun. Math. 27(2019), 51-68.
[16] C. Vincze, On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors, Europ. J. Math. 3(2017), 1098-1171.