Intrinsic Properties of Finsler Space with a cubic change in Infinite Series Metric

Document Type : Research Paper

Authors

1 Department of Mathematics, North-Eastern Hill University, Shillong

2 Department of Mathematics, North Eastern Hill University

Abstract

In this paper, we investigate a Finsler space characterized by a cubic changed infinite series metric given by F(γ, β)=β2/(β-γ_. We derive the fundamental tensors necessary to describe the geometric properties of this Finsler space. Additionally, we determine the conditions under which this Finsler space with the cubic modified infinite series metric can be simplified into special types of Finsler spaces, including quasi-C-reducible, semi-C-reducible, C-reducible, and C2-like Finsler spaces, based on its various forms of the Cartan tensor.

Keywords

Main Subjects


[1] P. L. Antonelli, Handbook of Finsler Geometry, Kluwer Academic Publishers, 2003.
[2] D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler Geometry, Springer, New York, 2000.
[3] V. K. Chaubey and Brijesh Kumar Tripathi, Finslerian Hypersurfaces of a Finsler Space with deformed Randers (α, β)-metric, Novi Sad J. Math., 53(2) (2023), 185-195.
[4] I. Y. Lee and H. S. Park, Finsler spaces with infinite series (α, β)-metric, J.Korean Math. Society, 41(3) (2004), 567-589.
[5] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys., 31 (1972), 43–83.
[6] M. Matsumoto, A slope of Mountain is a Finsler surface with respect to time measure, J. Math. Kyoto Univ., 29(1) (1989), 17-25.
[7] M. Matsumoto and S. Numata, On Finsler spaces with cubic metric, Tensor, N. S., 33 (1979), 153-162.
[8] M. Matsumoto, Randers spaces of constant curvature, Rep. on Math. Phys., 28 (1989), 249-261.
[9] M. Matsumoto, A special class of locally Minkowski spaces with an (α, β)-metric, Tensor, N. S., 50 (1991), 202-207.
[10] M. Matsumoto, Finsler spaces with (α, β)-metric of Douglas type, Tensor, N. S., 60 (1998), 123-134. 
[11] M. Matsumoto and S. Hojo, A conclusive theorem on C-reducible Finsler spaces, Tensor, N. S., 32 (1978), 225-230.
[12] T. N. Pandey and V. K. Chaubey, Main scalar of two-dimensional Finsler space with (γ, β)-metric, J. Rajasthan Acad. Phy. Sci., 11(1) (2012), 1-10.
[13] T. N. Pandey and V. K. Chaubey, Theory of Finsler space with (γ, β)-metric, Bulletin of the Transilvania University of Brasov, 4(53) (2011), 43-59.
[14] T. N. Pandey and V. K. Chaubey, On Finsler space with (γ, β)-metric: geodesic, connection and scalar curvature, Tensor, N. S., 74(2) (2013), 126-134.
[15] H. Shimada, On Finsler spaces with metric L = m p ai1i2...im(x)yi1yi2 ...yim, Tensor, N. S., 33 (1979), 365-372.
[16] H. S. Shukla and Arunima Mishra, On Finsler spaces with (γ, β)-metric, Matehamtical Fourm, 25 (2013), 63-76.
[17] G. Shanker and R. K. Sharma, R-complex Finsler spaes with infinite series (α, β)-metric, International Journal of Pure and Applied Mathematics, 120(3) (2018), 351-363.
[18] Bankteshwar Tiwari and Manoj Kumar, On Finsler Space with a special (α, β)-metric, The Journal of the Indian Mathematical Society, 82 (2015), 207-218.
[19] B. Tiwari, R. Gangopadhyay and G. K. Prajapati, On Semi C-reducibility of general (α, β)-Finsler metrics, Kyungpook Math. J., 59 (2) (2019), 353-362.