[1] R. Bala and V. Mishra, Generalized (k, t)-Narayana Sequence, Journal of Indonesian Mathematical Society, 30 (2024), 121-138.
[2] V.A. Baskakov, An instance of a seuqence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk SSSR RUS ENG Journals, 113 (1957), 249-251.
[3] S.N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilites, Communication of the Kharkov Mathematical Society, 13 (1912), 1-2.
[4] B.F. Vajargah and A. Nouraldin, A new hybrid method for data analysis when a significant percentage of data is missing, Journal of Hyperstructures, 13 (2024), 297-304.
[5] Q.B. Cai, B. Cekim, K. Kanat and M. Sofyalioglu, Some approximation results for the new modification of Bernstein beta operators, AIMS Mathematics, 7 (2022), 1831-1844.
[6] N. Deo, M. Noor and M.A. Siddiqui, On approximation by a class of new Bernstein type operators, Applied Mathematics and Computation,201 (2008), 604-612.
[7] D.J. Bhatt, R.K. Jana and V.N. Mishra, On a new class of Bernstein type operators based on beta function, Khayyam Journal of Mathematics, 6 (2020), 1-15.
[8] Z. Ditzian, Direct estimate for Bernstein polynomials , Journal of Approximation Theorey,79 (1994), 165-166.
[9] J.L. Durrmeyer, Une formule d’inversion de la transfarmee de Laplace: Applications la theorie des moments, Faculte des Sciences de I university de Paris, 38 (1967).
[10] Z. Finta, Remark on Voronovkaja theorem for q Bernstein operators, Universitatea Babes-Bolyai, 56 (2011), 335-339.
[11] Z. Finta, A pproximation properties of (p, q)-Bernstein type operators, Acta Universitatis Sapientiae, Mathematica, 8 (2016), 222-232.
[12] V. Gupta, Some approximation properties on q - Durrmeyer operators, Applied Mathematics and Computation, 197 (2008), 172-178.
[13] V. Gupta, A.J.L. Moreno and J.M.L. Palacios, Simultaneous approximation of the Bernstein- Durrmeyer operators, Applied Mathematics and Computation 213 (2009), 112-120.
[14] A. Holhas, A Voronovkaja type theorem for the first derivative of positive linear operator, Results in Mathematics, 74 (2009), 1-13.
[15] P. Agrawal, S.Araci and A.Kajla. (2019). A kantorovich variant of a generalized Bernstein operators, Journal of Mathematics and Computer Science, 19, 86-96.
[16] S.M. Kang, Some approximation properties of (p, q) Bernstein operators , Journal of Inequalities and Applications, 169 (2016), 1-10.
[17] G. Mirakayan, Approximation des fonction continues au moyan polynomes de la forme, Doklady
Akaldemii Nauk,31 (1941), 201-205.
[18] K.J. Ansari, A. Khan and Mursaleen On (p, q) analogue of Bernstein operators, Applied Mathematics
and Computation, 266 (2015), 874-882.
[19] G.M. Phillips, Bernstein polynomials based on the (q)-integers, Annals of Numerical Mathematics, 4
(1997), 511-518.
[20] H. Sharma, On Durrmeyer type generalization of (p, q)-Bernstein operators, Arabian Journal of Mathematics,
5 (2016), 239-248.
[21] K. Kanat and L.T. Su, Approximation by bivariate Bernstein-Kantorovich-Stancu operators that reproduce exponential functions, Journal of Inequalities and Applications, 6 (2024), 1-13.