[1] H. A. Ahangar and V. Samodivkin, The restrained geodetic number of a graph, Bull. Malaysian Math. Sci. Soc., 38 (2015) 1143–1155.
[2] D. Anandhababu and N. Parvathi, On independent domination number of Indu-Bala product of some families of graphs, AIP Conference Proceedings, 2112 (2019) 020139.
[3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, (Springer Science & Business Media, 2012).
[4] G. Chartrand, F. Harary, H. C. Swart, and P. Zhang, Geodomination in graphs, Bulletin of the ICA, 31 (2001), 51–59.
[5] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph, Networks: An International Journal, 39 (2002), 1–6.
[6] M. Chellali, N. Jafari Rad, S. M. Sheikholeslami, and L. Volkmann, Varieties of Roman domination II, AKCE International Journal of Graphs and Combinatorics, 17 (03) (2020), 966–984.
[7] S. R. Chellathurai and S. P. Vijaya, Geodetic domination in the corona and join of graphs, Journal of Discrete Mathematical Sciences and Cryptography, 17(01) (2014), 81–90.
[8] E. J. Cockayne, R. Dawes, and S. T. Hedetniemi, Total domination in graphs, Networks , 10 (03) (1980), 211–219.
[9] E. J. Cockayne, P. A. Dreyer Jr, S. M. Hedetniemi, and S. T. Hedetniemi, Roman domination in graphs, Discrete mathematics, 278(03) (2004), 11–22.
[10] S. Y. Cui and G. X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl., 437 (2012), 1692–1703.
[11] P. J. Davis, Circulant Matrices, (John Wiley & Sons, 1979).
[12] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar, and L. R. Markus, Restrained domination in graphs, Discrete mathematics, 203(03) (1999), 61–69.
[13] D.-Z. Du and P.-J. Wan, Connected Dominating Set: Theory and Applications, (Springer Science & Business Media, 2012).
[14] C. E. Go and S. R. Canoy Jr, Domination in the corona and join of graphs, International Mathematical Forum, 6 (2011), 763–771.
[15] C. D. Godsil and B. D. McKay, Constructing cospectral graphs, Aequationes Mathematicae, 25 (1982), 257–268.
[16] A. Hansberg and L. Volkmann, On the geodetic and geodetic domination numbers of a graph, Discrete Math., 310(15) (2010), 2140–2146.
[17] F. Harary, E. Loukakis, and C. Tsouros, The geodetic number of a graph, Math. Comput. Model., 17(11) (1993), 89–95.
[18] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, Topics in Domination in Graphs, (Springer, 2020).
[19] T. W. Haynes, S. T. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs, (CRC Press, 2013).
[20] G. Indulal and R. Balakrishnan, Distance spectrum of Indu–Bala product of graphs, AKCE International Journal of Graphs and Combinatorics, 13(3) (2016), 230–234.
[21] D.-X. Ma, X.-G. Chen, and L. Sun, On total restrained domination in graphs, Czechoslovak Mathematical Journal, 55 (2005), 165–173.
[22] V. Nikiforov, G. Past’n, O. Rojo, and R. L. Soto, On the Aα-spectra of trees, Linear Algebra and its Applications, 520 (2017), 286–305.
[23] S. Patil and M. Mathapati, Spectra of Indu–Bala product of graphs and some new pairs of cospectral graphs, Discrete Mathematics, Algorithms and Applications, 11(5) (2019), 1950056.
[24] I. M. Pelayo, Geodesic Convexity in Graphs, (Springer, 2013).
[25] M. Priyadharshini, N. Parvathi, and I. N. Cangul, Independent strong domination number of Indu-Bala product of graphs, Palestine Journal of Mathematics, 12(02) (2023), 80–88.
[26] D. B. West et al., Introduction to Graph Theory, (Prentice hall Upper Saddle River, 2001).
[27] F. Z. Zhang, The Schur Complement and its Applications, (Springer, 2005).
[28] R.W.Hung, Restrained domination and its variants in extended supergrid graphs, Th. Comp. Sci, (2023), 113-132.
[29] K.L.Bhavyavenu, Some study on geodetic number of a graph, Ph.D Thesis, http://hdl.handle.net/10603/363058, (2020)