[1] R. Arasu and N. Parvathi, Secure domination parameters of Halin graph with perfect k-ary tree, J. Appl. Math. Inf., 41(4), (2023), 839–848.
[2] M. Azari, On the Gutman index of thorn graphs, Kragujevac J. Sci., 40, (2018), 33–48.
[3] M. Azari and A. Iranmanesh, Dendrimer graphs as thorn graphs and their topological edge properties, Natl. Acad. Sci. Lett., 39, (2016), 455–460.
[4] R. Balakrishnan and K. Ranganathan, A textbook of graph theory, Springer, 2012.
[5] D. Bonchev and D. Klein, On the wiener number of thorn trees, stars, rings, and rods, Croat. Chem. Acta, 75(2), (2002), 613–620.
[6] R. Burdett, M. Haythorpe, and A. Newcombe, Variants of the domination number for flower snarks, Ars Math. Contemp., 24(3), (2024), P3.04, 26 pp.
[7] A. P. Burger, A. P. de Villiers, and J. H. van Vuuren, A linear algorithm for secure domination in trees, Discrete Appl. Math., 171, (2014), 15–27.
[8] A. P. Burger, M. A. Henning, and J. H. Van Vuuren, Vertex covers and secure domination in graphs, Quaest. Math., 31, (2008), 163–171.
[9] A. Cayley, On the mathematical theory of isomers, Phil. Magazine, 47, (1874), 444–447.
[10] E. J. Cockayne, Irredundance, Secure domination and maximum degree in trees, Discrete Math., 307, (2007), 12–17.
[11] E. J. Cockayne, P. J. P. Grobler, W. R. Gr ¨undlingh, J. Munganga, and J. H. Van Vuuren, Protection of a graph, Util. Math., 67, (2005), 19–32.
[12] Gisha Saraswathy and Manju K. Menon, Secure domination parameters in Sierpi´nski graphs, IAENG Int. J. Appl. Math., 53(2), (2023), 573–577.
[13] P. J. P. Grobler and C. M. Mynhardt, Secure domination critical graphs, Discrete Math., 309, (2009), 5820–5827.
[14] I. Gutman, Distance of thorny graphs, Publications De L’institut Mathematique, 63(77), (1998), 31–36.
[15] M. Haythorpe and A. Newcombe, The secure domination number of Cartesian products of small graphs with paths and cycles, Discrete Appl. Math., 309, (2022), 32–45.
[16] S. A. Hosseini, M. B. Ahmadi, and I. Gutman, Kragujevac Trees with minimal Atom-Bond Connectivity Index, MATCH Commun. Math. Comput. Chem., 71, (2014), 5–20.
[17] C. M. Mynhardt, H. C. Swart, and E. Ungerer, Excellent trees and secure domination, Util. Math., 67 (2005), 255—267.
[18] P. G. Nayana and I. R. Rajamani, On secure domination number of generalized Mycielskian of some graphs, J. Intell. Fuzzy Syst., 44(3), (2023), 4831–4841.
[19] G. Polya, Kombinatorische Anzahlbestimmungen fur Gruppen, Graphen und chemische Verbindungen, Acta Math., 68, (1937), 145–254.
[20] S. Shanmugavelan and C. Natarajan, On hop domination number of some generalized graph structures, Ural Math. J., 7, (2021), 121–135.
[21] D. Yun-Ping, W. Haichao, and Z. Yancai, The complexity of secure domination problem in graphs, Discuss. Math. Graph Theory, 38, (2018), 385–396.