The edge Seidel and minimum edge covering Seidel energy of the K1,n and K2,n graphs

Document Type : Research Paper

Authors

1 Department of Mathematics, Statistics and Computer Science, Semnan University

2 School of Mathematics, University of Sciences and Technology, P.O. Box: 16846-13114, Tehran, Iran.

Abstract

The Seidel energy of a graph is the sum of the absolute values of the eigenvalues of its Seidel matrix. In this paper, we introduce the concepts of edge Seidel energy E(Ls(G)) and edge covering Seidel energy E(Lsec(G)) for the K1,n and K2,n Graphs, and we have obtained some results.

Keywords

Main Subjects


[1] S. Akbari, J. Askari and K. Ch. Das, Some properties of eigenvalues of the Seidel matrix, Linear and Multilinear Algebra, 70 (2022), 2150–2161.
[2] S. Akbari, M. Einollahzadeh, M. M. Karkhaneei and M. A. Nematollahi, Proof of a conjecture on the Seidel energy of graphs, European Journal of Combinatorics, 86 (2020), 103078. 
[3] K. Ashoka and B. Parvathalu, Some relations between energy and Seidel energy of a graph, Acta Univ. Sapientiae Informatica, 15 (2023), 46–59.
[4] A. S. Banihashemi Dehkordi, S. Sabeti and S. Mohammadian Semnani, The minimum egge covering energy of a graph, Kragujevac Journal of Mathematics, 45 (2021), 969-–975.
[5] A. E. Brouwer and W. H. Haemers, Spectra of graphs, Springer Science and Business Media, 2011.
[6] H. A. Ganie, On distance Laplacian spectrum (energy) of graphs, Discrete Mathematics, Algorithms and Applications, 12 (2020), 2050061.
[7] G. Greaves, J. H. Koolen, A. Munemasa, F. Sz¨oll˝osi, Equiangular lines in Euclidean spaces, Journal of Combinatorial Theory, Series A, 138 (2016), 208–235.
[8] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103 (1978), 1–22. 
[9] W. H. Haemers, Seidel switching and graph energy, Available at SSRN 2026916, 103 (2012), 1–22.
[10] J. S. Kumar, B. Archana, K. Muralidharan and R. Srija, Spectral Graph Theory: Eigen Values Laplacians and Graph Connectivity, Metallurgical and Materials Engineering, 31 (2025), 78–84.
[11] M. R. Oboudi, Energy and Seidel energy of graphs, MATCH Commun. Math. Comput. Chem, 75 (2016), 291–303.
[12] H. S. Ramane, I. Gutman and M. M. Gundloor, Seidel energy of iterated line graphs of regular graphs, Kragujevac Journal of Mathematics, 39 (2015), 7–12.
[13] A. R. and M. M. Munir, Insights into network properties: spectrum-based analysis with Laplacian and signless Laplacian spectra, The European Physical Journal Plus, 138 (2023), 802.
[14] T. Shi, S. Ding, X. Xu and L. Ding, A community detection algorithm based on Quasi-Laplacian centrality peaks clustering, Applied Intelligence, (2021), 1–16.
[15] S. K. Vaidya and K. M. Popat, Some new results on Seidel equienergetic graphs, Kyungpook Mathematical Journal, 59 (2019), 335–340
[16] V. Lint, H. Jacobus and J. Johan Seidel, Equilateral point sets in elliptic geometry, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series A: Mathematical Sciences , 69 (1966), 335–348.