[1] S. Akbari, J. Askari and K. Ch. Das, Some properties of eigenvalues of the Seidel matrix, Linear and Multilinear Algebra, 70 (2022), 2150–2161.
[2] S. Akbari, M. Einollahzadeh, M. M. Karkhaneei and M. A. Nematollahi, Proof of a conjecture on the Seidel energy of graphs, European Journal of Combinatorics, 86 (2020), 103078.
[3] K. Ashoka and B. Parvathalu, Some relations between energy and Seidel energy of a graph, Acta Univ. Sapientiae Informatica, 15 (2023), 46–59.
[4] A. S. Banihashemi Dehkordi, S. Sabeti and S. Mohammadian Semnani, The minimum egge covering energy of a graph, Kragujevac Journal of Mathematics, 45 (2021), 969-–975.
[5] A. E. Brouwer and W. H. Haemers, Spectra of graphs, Springer Science and Business Media, 2011.
[6] H. A. Ganie, On distance Laplacian spectrum (energy) of graphs, Discrete Mathematics, Algorithms and Applications, 12 (2020), 2050061.
[7] G. Greaves, J. H. Koolen, A. Munemasa, F. Sz¨oll˝osi, Equiangular lines in Euclidean spaces, Journal of Combinatorial Theory, Series A, 138 (2016), 208–235.
[8] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103 (1978), 1–22.
[9] W. H. Haemers, Seidel switching and graph energy, Available at SSRN 2026916, 103 (2012), 1–22.
[10] J. S. Kumar, B. Archana, K. Muralidharan and R. Srija, Spectral Graph Theory: Eigen Values Laplacians and Graph Connectivity, Metallurgical and Materials Engineering, 31 (2025), 78–84.
[11] M. R. Oboudi, Energy and Seidel energy of graphs, MATCH Commun. Math. Comput. Chem, 75 (2016), 291–303.
[12] H. S. Ramane, I. Gutman and M. M. Gundloor, Seidel energy of iterated line graphs of regular graphs, Kragujevac Journal of Mathematics, 39 (2015), 7–12.
[13] A. R. and M. M. Munir, Insights into network properties: spectrum-based analysis with Laplacian and signless Laplacian spectra, The European Physical Journal Plus, 138 (2023), 802.
[14] T. Shi, S. Ding, X. Xu and L. Ding, A community detection algorithm based on Quasi-Laplacian centrality peaks clustering, Applied Intelligence, (2021), 1–16.
[15] S. K. Vaidya and K. M. Popat, Some new results on Seidel equienergetic graphs, Kyungpook Mathematical Journal, 59 (2019), 335–340
[16] V. Lint, H. Jacobus and J. Johan Seidel, Equilateral point sets in elliptic geometry, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series A: Mathematical Sciences , 69 (1966), 335–348.