[1] B. Alspach, Johnson graphs are Hamiltonian-connected, Ars Math. Contemp. 6 (2013), 21–23.
[2] N. L. Biggs, Algebraic Graph Theory (Second edition), New York, Cambridge Mathematical Library, Cambridge University Press, 1993.
[3] A. E. Brouwer, A. M. Cohn, A. Neumaer, Distance regular graphs, New York: Springer-Verlag, 1980.
[4] Y. C. Chen, Kneser Graphs Are Hamiltonian For n ≥ 3k, J Comb Theory B. 80 (2000), 69–79.
[5] D. Cvetkovic, P. Rowlinson, S. Simic, An introduction to the theory of graph spectra, New York, Cambridge Mathematical Library, Cambridge University Press, 2001.
[6] C. Dalfo, M. A. Fiol, M. Mitjana, On Middle Cube Graphs. Electron, J. Graph Theory Appl. 13 (2015), 133–145.
[7] G. A. Jones, Automorphisms and regular embedings of merged Johnson graphs, European J. Combin. 26 (2005), 417–435.
[8] A. Hiraki, A characterization of the doubled Grassmann graphs, the doubled Odd graphs, and the Odd graphs by strongly closed subgraphs, European J. Combin 24 (2003), 161–171.
[9] J. S. Kim, E, Cheng, L. Liptak, H. O. Lee, Embedding hypercubes, rings, and odd graphs into hyper-stars, Int. J. Comput. Math. 86 (2009), 771–778.
[10] S. M. Mirafzal, The automorphism group of the bipartite Kneser graph, Proc. Indian Acad. Sci. (Math. Sci). 129 (34) (2019).
[11] S. M. Mirafzal, A. Zafri, Some algebraic properties of bipartite Kneser graphs, Ars Comb. 153 (2020), 3–13 .
[12] T. M¨utze, P, Su, Bipartite Kneser graphs are Hamiltonian, Electron. Notes Discrete Math. 49 (2015), 259–267.
[13] D. K. Ray-Chaudhuri, AP, Sprague, Characterization of projective incidence structures, Geom. Dedicata. 5 (1976), 361–376.
[14] M. Ziaee, On the automorphism group of doubled Grassmann graphs Proc. Indian Acad. Sci. (Math. Sci).130 (64) (2020).