SB-neutrosophic structures in BCK/BCI-algebras

Document Type : Research Paper

Authors

1 Department of Mathematics, Acharya Nagarjuna University,{Guntur-522 510, Andhra Pradesh, India

2 Department of Mathematics, Sir C. R. Reddy college of Engineering, Eluru-534 007, Andhra Pradesh, India

3 Government degree college, Chintalpudi-534 460, Eluru, Andhra Pradesh, India

Abstract

This article presents the novel set termed SB - neutro-sophic set (SB-NSS), which extends the concept of the Neutrosophic set (NSS). We illustrate its fundamental operations with examples.This concept of SB-NSSs is applied
to BCK/BCI-algebras, and we introduce the notion of SB-neutrosophic subalgebra (SB-NSSA), SB-neutrosophic ideal
(SB-NSI), and related properties are investi-gated. Furthermore, we provide conditions for an SB-NSS to be an
SB-NSSA, for an SB-NSS to be an SB-NSI, and for an SB-NSSA to be an SB-NSI. In a BCI-algebra, conditions for an
SB-NSI to be an SB-NSSA are given.

Keywords


[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20 (1986),87–96.
[2] R. A. Borzooei, X. Zhang, F. Smarandache and Y. B. Jun, Commutative gener-alized neutrosophic ideals in BCK-algebras, Symmetry, 10 (2018), 350.
[3] M. B. Gorzaczany, A method of inference in approximate reasoning based on interval valued fuzzys ets, Fuzzy Sets and Systems, 21 (1987), 1–17.
[4] Y. S. Huang, BCI-algebra, Science Press, Beijing, (2006), 21.
[5] Y. Imai and K. Iski, On Axiom Systems of Propositional Calculi XIV,in Proceedings of the Japan Academy,(1966),19–22.
[6] K. Iski, An algebra related with a propositional calculus , Proceedingsof the Japan Academy, Series A, Mathematical Sciences, 42 (2009), doi:10.3792/pja/1195522171.
[7] K. Iseki, On BCI-algebras, Math. Semin. Notes, 8 (1980), 125–130.
[8] K. Iseki, On ideals in BCK-algebras, Math. Seminar Notes (presently Kobe J.Math.), 3 (1975), 1–12.
[9] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21 (1976),351–366.
[10] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul, Republic of Korea, (1994).
[11] J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems, 89 (1997), 243–248.
[12] Y. B. Jun and E. H. Roh, MBJ-neutrosophic ideals of BCK/BCI-algebras, Open Mathematics, 17 (2019), 588–601.
[13] Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras,Ann.Fuzzy Math.Inform., 14 (2017), 75–86.
[14] Y. B. Jun, S. Kim, and F. Smarandache, Interval neutrosophic sets with appli-cations in BCK/BCI-algebra, Axioms,
7 (2018), 23.
[15] Y. B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N -Structures Applied to BCK/BCI-Algebras Information, 8 (2017), 128.
[16] Y. B. Jun, F. Smarandache, S. Z. Song and M. Khan, Neutrosophic positive implicative N-ideals in BCK-algebras, Axioms, 7 (2018), 3.
[17] Y. B. Jun and S. Z. Song, Fuzzy set theory applied to implicative ideals in BCK-algebras, Bulletin of the Korean Mathematical Society, 43 (2006), 461–470. 2006.
[18] Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK algebras, Fuzzy Sets and Systems, 117 (2001), 463–469.
[19] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI algebras, Communi-cations of the Korean Mathematical Society, 9 (1994), 19–25.
[20] Y. B. Jun, Characterization of fuzzy ideals by their level ideals in BCK/BCI algebras, Math. Japonica, 38 (1993), 67–71.
[21] M. Khan, S. Anis, F. Smarandache and Y. B. Jun, Neutrosophic N-structures in semigroups and their applications, Collected Papers. Volume XIII: On various scientific topics, (2022) 353.
[22] M. A. Ozt rk and Y. B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J.Int.Math.Virtual Inst., 8 (2018), 1–17.
[23] A. B. Saeid and Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann.Fuzzy Math.Inform., 14 (2017), 87–97.
[24] S. Z. Song, F.Smarandache and Y.B.Jun,Neutrosophic commutative N-ideals in BCK-algebras,Information,8(2017), 130.
[25] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, In 2006 IEEE international conference on granular computing, (2006), 38–42.
[26] F. Smarandache, A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability: neutrsophic logic. Neutrosophy, neu-trosophic set, neutrosophic probability, Infinite Study, (2005).
[27] F. Smarandache and P. Surapati, New Trends in Neutrosophic Theory and Ap-plication, Brussels, Belgium, EU: Pons editions, (2016).
[28] M. M. Takallo, R. A. Borzooei and Y. B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets and Syst., 23 (2018), 72–84.
[29] O. G. Xi, Fuzzy BCK-algebras, Math. Japonica, 36 (1991), 935–942.
[30] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
[31] L. A. Zadeh, The Concept of a linguistic variable and its applications to approx-imate reasoning-I, Information.Sci Control, 8 (1975), 199–249.