[1] E. Albas, On τ -centralizers of semiprime rings, Sib. Math. J. 48 (2007), 191–196.
[2] A. Barari, B. Fadaee and H. Ghahramani, Linear maps on standard operator algebras characterized by action on zero products, Bull. Iran. Math. Soc. 45 (2019),1573–1583.
[3] M. Breˇsar, Characterizing homomorphisms, multipliers and derivations in rings with idempotents, Proc. R. Soc. Edinb. Sect. A. 137 (2007), 9–21.
[4] B. Fadaee and H. Ghahramani, Jordan left derivations at the idempotent elements on reflexive algebras , Publ. Math. Debrecen, 92/3-4 (2018), 261–275.
[5] B. Fadaee and H. Ghahramani, Linear maps on C∗-algebras behaving like (Anti-)derivations at orthogonal elements, Bull. Malays. Math. Sci. Soc. 43 (2020),2851–2859.
[6] B. Fadaee, K. Fallahi and H. Ghahramani, Characterization of linear mappings on (Banach)*-algebras by similar properties to derivations, Math. Slovaca, 70(4)(2020), 1003–1011.
[7] H. Farhadi, Characterizing left or right centralizers on ∗-algebras through orthog-onal elements, Math. Anal. Conv. Optim. 3 (2022), no. 1, 37–41.
[8] A. Foˇsner and H. Ghahramani, Ternary derivations of nest algebras, Operator and Matrices, 15 (2021), 327–339.
[9] H. Ghahramani, On centralizers of Banach algebras, Bull. Malays. Math. Sci.Soc. 38 (2015), 155–164.
[10] H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediterr. J. Math. (2018) 15: 38.https://doi.org/10.1007/s00009-018-1082-3.
[11] H. Ghahramani and S. Sattari, Characterization of reflexive closure of some operator algebras acting on Hilbert
C∗-modules, Acta Math. Hungar. 157 (2019),158–172, https://doi.org/10.1007/s10474-018-0877-9.
[12] H. Ghahramani, Left ideal preserving maps on triangular algebras. Iran J Sci Technol Trans Sci, 44 (2020), 109–118. https://doi.org/10.1007/s40995-019-00794-2.
[13] H. Ghahramani and A.H. Mokhtari, Characterizing linear maps of standard operator algebras through orthogonality, Acta Sci. Math. (Szeged) 88, (2022), 777–786,
https://doi.org/10.1007/s44146-022-00049-4.
[14] H. Ghahramani and W. Jing, Lie centralizers at zero products on a class of op-erator algebras, Ann. Funct. Anal. 12 (2021), 1–12.
[15] B. Hayati and H. Khodaei, On triple θ-centralizers, Int. J. Nonlinear Anal. Appl., (2023),
doi: 10.22075/ijnaa.2023.30207.4365.
[16] J. He, J. Li, and Qian, Characterizations of centralizers and derivations on some algebras, J. Korean Math. Soc. 54 (2017), 685–696.
[17] S. Huang and C. Haetinger, On θ-centralizers of semiprime rings, Demonstratio Math. 45 (2012), 29–34.
[18] I. Nikoufar and Th.M. Rassias, On θ-centralizers of semiprime Banach ∗-algebras,Ukranian Math. J. 66(2014), 300–310.
[19] X. Qi and J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin. (Engl. Ser.) 29 (2013),1245–1256.
[20] J. Vukman, I. Kosi-Ulbl, Centralizers on rings and algebras, Bull. Aust. Math.Soc. 71 (2005), 225–239.
[21] W. Xu, R. An, and J. Hou, Equivalent characterization of centralizers on B(H),Acta Math. Sinica (Engl. Ser.) 32 (2016), 1113–1120.