Some Suzuki-type best proximity point results on metric spaces endowed a graph

Document Type : Research Paper

Author

Department of Management, Payame Noor University (PNU), P.O.Box19395-4697, Tehran, Iran.

Abstract

In this paper, the researcher proved the best proximity point theorem for Suzuki type mappings in the setting of metric spaces endowed a graph. In particular, some earlier results in the literature on both best proximity theory and metric fixed point theory were enriched, extended, and at last generalized.

Keywords


[1] M.A. Al-Thaga  and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal., 70, pp. 3665-3671 (2009).
[2] J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topol. Appl., 156, pp. 2942-2948 (2009).
[3] S.S. Basha and P. Veeramani, \Best proximity pair theorems for multifunctions with open  bres, J. Approx. Theory, 103, pp. 119-129 (2000).
[4] V. Berinde, Iterative Approximation of Fixed Points, Editura Efemeride, Baia Mare (2002).
[5] R.M. Bianchini, M. Grandol , Transformazioni di tipo contracttivo gen- eraliz- zato in uno spazio metrico, Atti Acad. Naz. Lincei, VII. Ser., Rend., Cl. Sci. Fis. Mat. Natur., 45, pp. 212-216 (1968).
[6] F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal., 75, pp. 3895-3901 (2012).
[7] J. Caballero, J. Harjani and K. Sadarangani, A best proximity point theorem for Geraghty-contractions, Fixed Point Theory and Applications, 2012, 231 (2012).
[8] A.A. Eldred and P. Veeramani Existence and convergence of best proximity points, J. Math. Anal. Appl., 323, pp. 1001-1006 (2006).
[9] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 1(136) pp. 13591373 (2008).
[10] M. De la Sen, Fixed point and best proximity theorems under two classes of integral-type contractive conditions in uniform metric spaces, Fixed Point Theor. Appl., 12 (Art. ID 510974) (2010).
[11] E. Karapnar, Best proximity points of cyclic mappings, Appl. Math. Lett., 25(11), pp. 1761-1766 (2012).
[12] E. Karapnar, On best proximity point of  -Geraghty contractions, preprint.
[13] E. Karapnar and I.M. Erhan, Best proximity point on di erent type contractions, Appl. Math. Inf. Sci., 3(3), pp. 342-353 (2011).
[14] E. Karapnar, Best proximity points of Kannan type cylic weak phi-contractions in ordered metric spaces, Analele Stiinti ce ale Universitatii Ovidius Constanta, 20(3), pp. 51-64 (2012).
[15] W.A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim., 24, pp. 851-862 (2003).
[16] J. Markin, N. Shahzad, Best approximation theorems for nonexpansive and condensing mappings in hyperconvex spaces, Nonlinear Anal., 70, pp. 2435-2441 (2009).
[17] V. Pragadeeswarar, and M. Marudai, Best proximity points: approximation and optimization in partially ordered metric spaces, Optim. Lett., DOI 10.1007/s11590-012-0529-x.
[18] P.D. Proinov, A generalization of the Banach contraction principle with high order of convergence ofsuccessive approximations, Nonlinear Analysis: Theory, Methods & Applications, 67, pp. 2361-2369 (2007).
[19] P.D. Proinov, New general convergence theory for iterative processes and its
applications to NewtonKantorovich type theorems, Journal of Complexity, 26, pp. 3-42 (2010).
[20] V.S. Raj, P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen.Topol., 10, pp. 21-28 (2009).
[21] V.S. Raj, A best proximity theorem for weakly contractive non-self mappings, Nonlinear Anal., 74, pp. 4804-4808 (2011).
[22] S. Sadiq Basha, P. Veeramani, Best proximity point theorem on partially ordered sets, Optim. Lett., (2012). doi: 10.1007/s11590-012-0489-1
[23] B. Samet, Some results on best proximity points, J. Optim. Theory Appl., DOI 10.1007/s10957-013-0269-9.
[24] N. Shahzad, S.S. Basha, R. Jeyaraj, Common best proximity points: global optimal solutions, J. Optim.Theor. Appl., 148, pp. 69-78 (2011).
[25] P.S. Srinivasan, Best proximity pair theorems, Acta Sci. Math. (Szeged), 67, pp. 421|429 (2001).
[26] K. Suzuki, A new type of  xed point theorem in metric spaces, Nonlinear Analysis: Theory, Methods &Applications, 71(11), pp. 5313-5317 (2009).
[27] K. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer.Math. Soc., 136, 18611869 (2008).
[28] J. Zhang, Y. Su and Q. Cheng, A note on A best proximity point theorem for Geraghty-contractions, Fixed Point Theory and Appl., 2013, 99 (2013)