[1] T. Kowalski and H. Ono, Residuated lattices: an algebraic glimpse at logic without contraction, 2001
[2] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, 1998.
[3] R. Cingnoli, I.M.L. D’Ottaviano and D. Mundici , Algebraic Foundations of Many-valued Reasoning, Kluwer Academic publ., Dordrecht, 2000.
[4] F. Esteva and L. Godo, Monoidal t-norm based logic, towards a logic for left-continuous t-norm, Fuzzy sets and systems, 124 (2001), 271-288.
[5] M. Ward and R. P. Dilworth, Residueted Lattices, Trans. Am. Math. Soc. 45(1939), 335-354.
[6] T. S. Blyth and M. F. Janowitz, Residuation Theory , Pergamon press, Oxford,New York, 1972.
[7] G. Gratzer, Lattice Theory, First Concepts and Distributive Lattices, A Series of Books in Mathematics, San Francisco:
W. H. Freeman and Company 1972.
[8] U. Hohle, Commutative, residuated l-monoids, in: U. Hohle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets, Kluwer Academic Publishers, Boston, Dordrecht, 1995, 53-106.
[9] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
[10] Y. B. Jun and K. J. Lee, Graphs based on BCK/BCI-algebras, Interna-tional Journal of Mathematices and Mathematical Sciences, vol.2011, Article ID 616981, 8 pages, 2011.
[11] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
[12] A. Iorgulescu: Classes of BCK algebras-Part III, Preprint Series of The Institute of Mathematics of the Romanian Academy, preprint nr.3 (2004), 1-37.
[13] A. Iorgulescu, On BCK-algebras - Part III: Classes of examples of proper MV - algebras, BL-algebras and divisible bounded residuated lattices, with or without condition (WNM), submitted.