Regular equivalence and strongly regular equivalence on multiplicative ternary hyperring

Document Type : Research Paper

Authors

1 Department of Mathematics, Darjeeling Government College, P.O.Box 734101, Darjeeling, India

2 Department of Mathematics, Ananda Mohan College, P.O.Box 700009, Kolkata, India

3 Department of Pure Mathematics, University of Calcutta, P.O.Box 700019, Kolkata, India

Abstract

We introduce the notion of a multiplicative ternary hyperring, consider regular equivalences and strongly regular equivalences of a multiplicative ternary hyperring and investigate their properties. As a consequence, three isomorphism theorems on multiplicative ternary hyperrings are obtained.

Keywords


[1] A. Assokumar and M. Velrajan, Hyperring of Matrices over a regular Hyperring., Italian Journal of Pure and Applied Mathematics,23 No.23( 2008)
[2] B. Davvaz, Isomorphism Theorems of Hyperrings. Indian Journal of Pure and Applied Mathematics.35 No.3(2004)
[3] B. Davvaz and S. Mirvakili, Relations on Krasner (m, n)- hyperrings. European Journal of Combinatories. 31 (2010),
http: //dx.doi.org/10.1016/j.ejc.2009.07.006.
[4] B. Davvaz and V. Leoreanu-Fotea Hyperring Theory and Applications, Interna-tional Academic press, Palm Harbor. Florida, USA(2007).
[5] D. H. Lehmer, A Ternary Analogue of Abelian Groups, Amer. J. Math., 54(2) (1932), 329-338.
[6] E. L. Post, Polyadic Groups, Trans. Amer. Math. Soc., 18 (1940) 208-350.
[7] F. Marty, Sur une generalization de la notion de group, 8th congress des Math. Scandenaves stockholm, (1934), 45-49.
[8] H. Pr¨ufer, Theorie der Abelschen Gruppen, I. Grundeigenschaften, Math. Z., 20 (1924), 165-187.
[9] J. R. Castillo and Jocelyn S. Paradero-Vilela, Quotient and Homomorphism in Ternary Hyperrings, International Journal of Mathematical Analysis, 8 (2014).no.58, 2845-2859.
[10] M. De Salvo. Hyperring and Hyperfields. Anneles Scientifiques de Universite de Clermont-Ferrand II No. 22,(1984).
[11] M. Krasner, A Class of hyperrings and hyperfields, Internat. J. Math, Sci., 6 (1983) 307-311.
[12] R. Rota, R, Strongly Distribute Multiplicative Hyperrings. Journal of Geometry. 39, No-1(1990) 130-138
[13] S. M. Anvariyeh and S. Mirvakili, Canonical (m, n)-Hypermodules over krasner (m, n)-ary Hyperrings, Iranian Journal of Mathematical Science and Informatics, 7 No 2(2012),
[14] W. G. Lister, Ternary Rings, Trans. Amer. Math. Soc., 154 (1971), 37-55.