The stability of pexider type functional equation in intuitionistic fuzzy banach spaces via fixed point techique

Document Type : Research Paper

Authors

1 Department of Mathematics, Orphuli Uday Chand Memorial Institute, Orphuli, Bagnan, Howrah, 711303, West Bengal, India.

2 Department of Mathematics, Moula Netaji Vidyalaya, Moula, Howrah, 711312, West Bengal, India.

3 Department of Mathematics, Uluberia College, 711315, Howrah, India

Abstract

The object of the present paper is to appraise generalization of the Hyers-Ulam-Rassias stability theorem for Pexider type functional equation f ( 2 x + y ) − f ( x + 2 y ) = 3 g ( x ) − 3 h ( y ) ( 1 ) in intuitionistic fuzzy Banach spaces and stability results have been obtained by a fixed point method . This method shows that the stability is related to some fixed point of a suitable operator .

Keywords


[1] A. K. Mirmostafee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias the-orem, Fuzzy sets and systems, 159 (2008), 720−729.
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat.Acad.Sci. U.S.A. 27 (1941), 222−224.
[3] D. Mihet, The fixed point method for fuzzy stability of the Jensen functional equa-tion, Fuzzy sets and systems, 160 (2009), 1663−1667.
[4] F. Skof, Proprieta locali e approssimazione di opratori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113−129.
[5] G. Deschrijiver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 23 (2003), 227−235.
[6] G. Isac, T. H. Rassians, Stability of ψ -additive mapping : applications to nonlinear analysis, International Journal of Mathematics and Mathematical Sciences, 19 (1996), 219−228.
[7] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039−1046.
[8] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87−96.
[9] L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338−353.
[10] L. Cadariu, V. Radu, Fixed points and stability for functional equations in prob-abilistic metric and random normed spaces, Fixed point theory and applications, Article ID 589143, 18 pages, 2009.
[11] P. Gavruta, A generalization of the Hyers-Ulam-Rassias Stability of approxi-mately additive mappings, J. Math. Anal. appl., 184 (1994), 431−436.
[12] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76 − 86.
[13] R. Saadati, J. H. Park, On Intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006), 331−344.
[14] S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59−64.
[15] S. M. Ulam, Problems in Modern Mathematics, Chapter vi, Science Editions, Wiley, New York, 1964.
[16] S. Shakeri, Intutionistic fuzzy stability of Jenson Type Mapping, J.Non linear Sc. Appl. 2 (2009), 105−112.
[17] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64−66.
[18] T. K. Samanta and Iqbal H. Jebril, Finite dimentional intuitionistic fuzzy normed linear space, Int. J. Open Problems Compt. Math., 2( 4) (2009), 574591.
[19] T. K. Samanta, N. Chandra Kayal, P. Mondal, The stability of a general quadratic functional equation in fuzzy Banach spaces, Journal of Hyperstructures, 1 (2),(2012), 71−87.
[20] T. K. Samanta, P. Mondal, N. Chandra Kayal, The generalized Hyers-Ulam-Rassias stability of a quadratic functional equation in fuzzy Banach spaces, Annals of Fuzzy Mathematics and Informatics Volume 6, No. 2, (2013), pp. 59−68.
[21] Th.M.Rassias, On the stability of the functional equations in Banach spaces, J.Math. Anal.Appl. 251(2000), 264−284.
[22] V. Radu, The fixed point alternative and the stability of functional equations, Fixed point theory, 4 (2003), 91−96.