On general n-ary hyperstructure semilattices

Document Type : Research Paper

Authors

1 School of Mathematics, Iran University of Science and Technology, P.O.Box 16846 -13114, Tehran, Iran

2 Department of Mathematics, Shahid Bahonar University of Kerman, P.O.Box 76169- 133, Kerman, Iran

Abstract

 In this paper, the n-ary hyperstructure will be applied to some aspects of lattice theory. We introduce the concepts of general n-ary hyperstructure semilattice ( or gnh-semilattice) and Gnh-subsemilattice, ideal of gnh-semilattice, gno-order, Gnoorder, multiplier of type α on gnh-semilattice, F-quasi invariant subset of gnh-semilattice and so on. We also study some of their related properties.

Keywords


[1] A.R. Ashrafi, About some join spaces and hyperlattices, Italian J. Pure Appl.Math., 10 (2001), 199-205.
[2] G. Birkhoff, Lattice theory,American Mathematical Society Colloguium Publi-cations [M],Providence,Rhode Island, (1940).
[3] I. Bosnjak and R. Madrasz, On power structures, Algebra and Discrete Math.,2, (2003), 14-35.
[4] J. Chvalina,S.H.Mayerova,General ω-hyperstructures and certain applications of those,Ratio Mathematics,23,(2012), 3-20.
[5] J. Chvalina, S. H. Mayerova and A. D. Nezhad, General actions of hyperstructures and some applications, An. St. Univ. Ovidius Constanta, 21, No. 1 (2013), 59-82.
[6] P. Corsini and V. Leoreanu, Applications of hyperstructures theory, Advanced in Mathematics, Kluwer Academic Publisher, (2003).
[7] B. Davvaz, A brief survey of the theory of Hv-structures, Proc. In eighth Interna-tional Congress on Algebraic Hyperstructures and Applications, 1-9 Sep., 2002, Samothraki, Greece, Spanidis Press, (2003), 39-70.
[8] A. Dehghan Nezhad and B. Davvaz, An introduction to the theory of Hv-semilattices, Bulletin of the Malaysian Mathematical Sciences Society, (2) 32(3),(2009), 375-390.
[9] R. S. Hashemi, Applications of transformation hypergroups, M.Sc. Project, writ-ten under direction of Dr. Akbar Dehghan Nezhad, Yazd University, Iran, (2008).
[10] K.H. Kim, Multipliers in BE-algebras, Inter. Mathematical Forum, 6, No.17,(2011), 815-820.
[11] M. Konstantinidou, A representation theorem for P-hyperlattices, Riv. Mat. Pura Appl., 18, (1996), 63-69.
[12] M. Konstantinidou, On P-hyperlattices and their distributivity, Rend. Circ. Mat.Palermo (2) 42, (1993), 391-403.
[13] M. Konstantinidou, Distributive and complemented hyperlattices, Prakt. Akad.Athenon, 56 (1981), 339-360.
[14] M. Konstantinidou, On the hyperlattice-ordered groupoids, Boll. Unione Mat.Ital., VI. Ser., A 2, (1983), 343-350.
[15] M. Konstantinidou and J. Mittas, An introduction to the theory of hyperlattices,Math. Balkanica, 7, (1977), 187-193.
[16] M. Konstantinidou and A. Synefaki, A strong Boolean hyperalgebra of Boolean functions, Italian J. Pure Appl. Math., 2, (1997), 9-18.
[17] F. Marty, Sur une generalization de la notion de groupe,In eighth Congress Math.,Scandinaves,Stockholm,(1934),45-49.
[18] C. Pelea, Identities and multialgebras, Italian J. Pure and Appl. Math., 15, (2004), 83-92.
[19] A. Rahnamai-Barghi, The prime ideal theorem for distributive hyperlattices, Ital-ian J. Pure Appl. Math.,10,(2001),75-78.
[20] A. Rahnamai-Barghi, The prime ideal theorem and semiprime ideals in meethy-perlattices, Italian J. Pure Appl. Math., 5, (1999), 53-60.
[21] M. Sambasiva Rao, Multipliers of hypersemilattices, International Journal of Mathematics and Soft Computing 3, No.1 (2013), 29-35.
[22] T. Vougiouklis, The fundamental relation in hyperrings, The general hyperfield, Algebraic hyperstructures and applications (Xanthi, 1990), 203-211, World Sci. Publishing, Teaneck, NJ, (1991).
[23] Y. Xiao and B. Zhao, Hypersemilattices and their ideals, J. Shaanxi Normal Univ. Nat. Sci. Ed., 33, (2005), 7-10.