A numerical approach based on the reproducing kernel hilbert method on non-uniform girds for solving system of fredholm integro-differential equations

Document Type : Research Paper

Authors

1 Faculty of Mathematical Sciences, University of Malayer, P. O. Box 65718-18164, Malayer, Iran

2 Department of Mathematics, Payme Noor University, P. O. Box 19395-4697 Tehran,IRAN.

Abstract

In this paper, we develop a numerical approach based on the reproducing kernel Hilbert (RKHS) method on non-uniform
girds for solving the linear Fredholm integro-differential equations with variable coefficients. Furthermore, convergence of the proposed method is presented providing the theoretical basis of this method. Finally, we test our method on one example to demonstrate the efficiency and applicability of the proposed method.

Keywords


[1] L.M. Delves, J.L. Mohamed, Computational Methods for Integral Equations,Cambridge University Press, Cambridge,1985.
[2] P. Schiavane, C. Constanda, A. Mioduchowski, Integral Methods in Science and Engineering, Birkhuser, Boston, 2002.    [3] K. Holmaker, Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones, SIAM J. Math. Anal. 24 (1) (1993) 116-128.
[4] A. Kyselka, Properties of systems of integro-differential equations in the statis-tics of polymer chains, Polym. Sci. USSR
19 (11) (1977) 2852-2858.
[5] F. Bloom, Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory, J. Math. Anal. Appl. 73 (1980) 524-542.
[6] K. Maleknejad, M. Tavassoli Kajani, Solving linear integro-differential equation system by Galerkin methods with hybrid functions, Appl. Math. Comput.159 (2004) 603-612.
[7] A. Dogan, Numerical solution of regularized long wave equation using Petrov-Galerkin method, Commun. Numer. Methods Eng. 17 (2001) 485-494.
[8] J. Pour-Mahmoud, M.Y. Rahimi-Ardabili, S. Shahmorad, Numerical so-lution of the system of Fredholm integro differential equations by the Tau method,Appl. Math. Comput. 168 (2005) 465-478.
[9] H. Brunner, Collocation Method for Volterra Integral and Related Functional Equations, Cambridge University Press, Cambridge, 2004.
[10] K. Maleknejad, H. Safdari, M. Nouri, Numerical solution of an integral equations system of the first kind by using an operational matrix with block pulse functions, Int. J. Systems Sci. 42 (1) (2011) 195-199.
[11] A.A. Dascoglua, M. Sezer, Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra
integro-differential equations, J. Franklin. Inst. 342 (2005) 688-701.
[12] K. Maleknejad, M. Tavassoli Kajani, Y. Mahmoudi, Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets, Kybernetes 32 (9-10) (2003) 1530-1539.
[13] K. Maleknejad, Y. Mahmoudi, Taylor polynomial solution of high-order non-linear Volterra-Fredholm integro differential equations, Appl. Math. Comput. 145 (2003) 641-653.
[14] H. Sadeghi Goghary, Sh. Javadi, E. Babolian, Restarted Adomian method for system of nonlinear Volterra integral equations, Appl. Math. Comput. 161 (2005) 745-751.
[15] J. Biazar, H. Ghazvini, He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind, Chaos Solit. Fractals 39 (2009) 770-777.
[16] E. Babolian, J. Biazar, Solution of a system of nonlinear Volterra equations of the second kind, Far East J. Math. Sci. 2 (6) (2000) 935-945.
[17] E. Babolian, J. Biazar, A.R. Vahidi, On the decomposition method for sys-tem of linear equations and system of linear Volterra integral equations, Appl. Math. Comput. 147 (1) (2004) 19-27.
[18] E. Babolian, J. Biazar, A.R. Vahidi, The decomposition method applied to systems of Fredholm integral equations of the second kind, Appl. Math. Com-put. 148 (2) (2004) 443-452.
[19] K. Maleknejad, F. Mirzae, S. Abbasbandy, Solving linear integro-differential equations system by using rationalized Haar functions method, Appl. Math. Comput. 155 (2004) 317-328.
[20] K. Maleknejad, M. Tavassoli Kajani, Solving linear integro-differential equa-tion system by Galerkin methods with hybrid functions, Appl. Math. Comput.159 (2004) 603-612.
[21] A. Arikoglu, I. Ozkol, Solutions of integral and integro-differential equation systems by using differential transform method, Comput. Math. Appl. 56 (2008) 2411-2417.
[22] C.T.H. Baker, A. Tang, Stability analysis of continuous implicit Runge-Kutta methods for Volterra integro-differential systems with unbounded delays, Appl. Numer. Math. 24 (1997) 153-173.
[23] Li-Hong Yang, Ji-Hong Shen, Yue Wang, The reproducing kernel method for solving the system of the linear Volterra integral equations with variable coef-ficients, J. Comput. Appl. Math. 236 (2012) 2389-2405.
[24] M. Cui, F. Geng, A computational method for solving third-order singularly perturbed boundary-value problems, Appl. Math. Comput. 198 (2008) 896-903.
[25] M. Ghasemi, M. Fardi and R. K. Ghaziani, Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space, Appl. Math. Comput. , 268 (2015), 815-831.
[26] M. Fardi, R. K. Ghaziani, and M. Ghasemi, The Reproducing Ker-nel Method for Some Variational Problems Depending on Indefinite Integrals, Math.l Model. Anal., 21(3)(2016), 412-429.
[27] M. Fardi and M. Ghasemi, Solving nonlocal initial-boundary value problems for parabolic and hyperbolic integro-differential equations in reproducing kernel hilbert space, Numer. Methods Partial D. E., 33(1)(2016), 174-198.
[28] S. Vahdati, M. Fardi, and M. Ghasemi, Option pricing using a computational method based on reproducing kernel,
J. Compu. Appl. Math., 328 (2018), 252-266.
[29] Z. Chen, Y.Z. Lin, The exact solution of a linear integral equation with weakly singular kernel, J. Math. Anal. Appl. 344 (2008) 726-734.
[30] Li-Hong Yang, Yingzhen Lin, Reproducing kernel methods for solving linear initial-boundary-value problems, Electron.
J. Differ. Equ. 29 (2008) 1-11.
[31] Zhong Chen, Yong Fang Zhou, An efficient algorithm for solving Hilbert type singular integral equations of the second kind, Comput. Math. Appl. 58 (2009) 632-640.
[32] M. Cui and Y. Lin, Nonlinear numerical analysis in the reproducing Kernel space, New York: Nova Science, (2009).