[1] L.M. Delves, J.L. Mohamed, Computational Methods for Integral Equations,Cambridge University Press, Cambridge,1985.
[2] P. Schiavane, C. Constanda, A. Mioduchowski, Integral Methods in Science and Engineering, Birkhuser, Boston, 2002. [3] K. Holmaker, Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones, SIAM J. Math. Anal. 24 (1) (1993) 116-128.
[4] A. Kyselka, Properties of systems of integro-differential equations in the statis-tics of polymer chains, Polym. Sci. USSR
19 (11) (1977) 2852-2858.
[5] F. Bloom, Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory, J. Math. Anal. Appl. 73 (1980) 524-542.
[6] K. Maleknejad, M. Tavassoli Kajani, Solving linear integro-differential equation system by Galerkin methods with hybrid functions, Appl. Math. Comput.159 (2004) 603-612.
[7] A. Dogan, Numerical solution of regularized long wave equation using Petrov-Galerkin method, Commun. Numer. Methods Eng. 17 (2001) 485-494.
[8] J. Pour-Mahmoud, M.Y. Rahimi-Ardabili, S. Shahmorad, Numerical so-lution of the system of Fredholm integro differential equations by the Tau method,Appl. Math. Comput. 168 (2005) 465-478.
[9] H. Brunner, Collocation Method for Volterra Integral and Related Functional Equations, Cambridge University Press, Cambridge, 2004.
[10] K. Maleknejad, H. Safdari, M. Nouri, Numerical solution of an integral equations system of the first kind by using an operational matrix with block pulse functions, Int. J. Systems Sci. 42 (1) (2011) 195-199.
[11] A.A. Dascoglua, M. Sezer, Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra
integro-differential equations, J. Franklin. Inst. 342 (2005) 688-701.
[12] K. Maleknejad, M. Tavassoli Kajani, Y. Mahmoudi, Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets, Kybernetes 32 (9-10) (2003) 1530-1539.
[13] K. Maleknejad, Y. Mahmoudi, Taylor polynomial solution of high-order non-linear Volterra-Fredholm integro differential equations, Appl. Math. Comput. 145 (2003) 641-653.
[14] H. Sadeghi Goghary, Sh. Javadi, E. Babolian, Restarted Adomian method for system of nonlinear Volterra integral equations, Appl. Math. Comput. 161 (2005) 745-751.
[15] J. Biazar, H. Ghazvini, He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind, Chaos Solit. Fractals 39 (2009) 770-777.
[16] E. Babolian, J. Biazar, Solution of a system of nonlinear Volterra equations of the second kind, Far East J. Math. Sci. 2 (6) (2000) 935-945.
[17] E. Babolian, J. Biazar, A.R. Vahidi, On the decomposition method for sys-tem of linear equations and system of linear Volterra integral equations, Appl. Math. Comput. 147 (1) (2004) 19-27.
[18] E. Babolian, J. Biazar, A.R. Vahidi, The decomposition method applied to systems of Fredholm integral equations of the second kind, Appl. Math. Com-put. 148 (2) (2004) 443-452.
[19] K. Maleknejad, F. Mirzae, S. Abbasbandy, Solving linear integro-differential equations system by using rationalized Haar functions method, Appl. Math. Comput. 155 (2004) 317-328.
[20] K. Maleknejad, M. Tavassoli Kajani, Solving linear integro-differential equa-tion system by Galerkin methods with hybrid functions, Appl. Math. Comput.159 (2004) 603-612.
[21] A. Arikoglu, I. Ozkol, Solutions of integral and integro-differential equation systems by using differential transform method, Comput. Math. Appl. 56 (2008) 2411-2417.
[22] C.T.H. Baker, A. Tang, Stability analysis of continuous implicit Runge-Kutta methods for Volterra integro-differential systems with unbounded delays, Appl. Numer. Math. 24 (1997) 153-173.
[23] Li-Hong Yang, Ji-Hong Shen, Yue Wang, The reproducing kernel method for solving the system of the linear Volterra integral equations with variable coef-ficients, J. Comput. Appl. Math. 236 (2012) 2389-2405.
[24] M. Cui, F. Geng, A computational method for solving third-order singularly perturbed boundary-value problems, Appl. Math. Comput. 198 (2008) 896-903.
[25] M. Ghasemi, M. Fardi and R. K. Ghaziani, Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space, Appl. Math. Comput. , 268 (2015), 815-831.
[26] M. Fardi, R. K. Ghaziani, and M. Ghasemi, The Reproducing Ker-nel Method for Some Variational Problems Depending on Indefinite Integrals, Math.l Model. Anal., 21(3)(2016), 412-429.
[27] M. Fardi and M. Ghasemi, Solving nonlocal initial-boundary value problems for parabolic and hyperbolic integro-differential equations in reproducing kernel hilbert space, Numer. Methods Partial D. E., 33(1)(2016), 174-198.
[28] S. Vahdati, M. Fardi, and M. Ghasemi, Option pricing using a computational method based on reproducing kernel,
J. Compu. Appl. Math., 328 (2018), 252-266.
[29] Z. Chen, Y.Z. Lin, The exact solution of a linear integral equation with weakly singular kernel, J. Math. Anal. Appl. 344 (2008) 726-734.
[30] Li-Hong Yang, Yingzhen Lin, Reproducing kernel methods for solving linear initial-boundary-value problems, Electron.
J. Differ. Equ. 29 (2008) 1-11.
[31] Zhong Chen, Yong Fang Zhou, An efficient algorithm for solving Hilbert type singular integral equations of the second kind, Comput. Math. Appl. 58 (2009) 632-640.
[32] M. Cui and Y. Lin, Nonlinear numerical analysis in the reproducing Kernel space, New York: Nova Science, (2009).