[1] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8(1957), 1093-1100.
[2] K. H. Kim, On right derivation of incline algebras, Journla of Chung cheng Mathematical society, 26(4) (2013), 683-690.
[3] K. H. Kim, On genralized right derivation of incline algebras, Gulf journal fo Mathematics, 3(1)(2015), 36-46.
[4] K. H. Kim, On genralized right derivation of incline, journal fo Mathematics, 6(2016), 31-47.
[5] M. Bresar and Vukman, On left derivations and related mappings, Proc. Amer.Math. Soc., 110(1)(1990), 7-16.
[6] M. Murali Krishna Rao, Γ−semirings-I, Southeast Asian Bull. Math. 19 (1)(1995), 49-54.
[7] M. Murali Krishna Rao and B. Venkateswarlu, Regular Γ−incline and field Γ−semiring, Novi Sad J. of Math., 45(2)(2015), 155-171.
[8] M. Murali Krishna Rao and B. Venkateswarlu, On generalized right derivations of Γ− incline, Journal Of The International Mathematical Virtual Institute, 6(2016), 31-47.
[9] M. Murali Krishna Rao and B. Venkateswarlu, Right derivation of ordered Γ−semiring, Discussiones Mathematicae, General Algebra And Applications, 36(2)(2016), 209-221.
[10] M. Murali Krishna Rao, bi-interior Ideals in semigroups, Discussiones Mathematicae General Algebra and Applications, 38(2018), 69-78. doi:10.7151/dmgaa.1284.
[11] M. Murali Krishna Rao, bi-interior Ideals in Γ-semirings, Discussiones Mathematicae General Algebra and Applications,38(2)(2018), 239-254.doi:10.7151/dmgaa.1284.
[12] Marapureddy Murali Krishna Rao, A study of bi-quasi-interior ideal as a new generalization of ideal of generalization of semiring, Bull. Int. Math. Virtual Inst,8(2018), 519-535.
[13] M. Murali Krishna Rao, A study of quasi-interior ideal of semiring, Bull. Int. Math. Virtual Inst, 2(2019), 287-300.
[14] M. Murali Krishna Rao, A study of generalization of bi- ideal, quasi- ideal and interior ideal of semigroup, Mathematica Morovica, 22(2)(2018), 103-115.