[1] M. Rahman, Integral Equations and their Applications, WIT Press, Southamp-ton, Boston, (2007).
[2] J. Wiley, Integral Equations, A Wily-Interscience publication, Canada, (1989).
[3] K.M. Kolwankar and A.D. Gangal, Hlder exponents of irregular signals and local fractional derivatives, Pramana J. Phys., 48 (1997), 49-68.
[4] K.M. Kolwankar, A.D. Gangal, Local fractional FokkerPlanck equation, Phys. Rev. Lett., 80 (1998) 214-217.
[5] W. Chen, Timespace fabric underlying anomalous diffusion, Chaos, Solitons and Fractals, 28 (2006), 923-929.
[6] W. Chen, X.D. Zhang and D. Korosak, Investigation on fractional and fractal derivative relaxation- oscillation models, Int. J. Nonlinear, Sci. Num., 11 (2010),3-9.
[7] J.H. He, A new fractal derivation, Thermal Science, 15 (2011), 140-147.
[8] J.H. He, S.K. Elagan and Z.B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phy. Lett.A, 376 (2012), 257-259.
[9] A. Parvate and A. D. Gangal, Fractal differential equations and fractal time dynamical systems, Pramana J. Phys., 64 (2005) 389-409.
[10] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line -I, Fractals,17 (2009), 53-81.
[11] A. Carpinteri, B. Cornetti and K. M. Kolwankar, Calculation of the tensile and flexural strength of disordered materials using fractional calculus, Chaos, Solitons and Fractals, 21 (2004), 623-632.
[12] A.V. Dyskin, Effective characteristics and stress concentration materials with self-similar microstructure, Int. J. Sol. Struct., 42 (2005), 477-502.
[13] X. J. Yang, Applications of local fractional calculus to engineering in fractal time-space: Local fractional differential equations with local fractional derivative,ArXiv:1106.3010v1, (2011).
[14] F.B. Adda and J. Cresson, About non-differentiable functions, J. Math. Anal. Appl., 263 (2001) 721-737.
[15] A. Babakhani and V.D. Gejji, On calculus of local fractional derivatives, J. Math. Anal. Appl., 270 (2002), 66-79.
[16] X.R. Li, Fractional Calculus, Fractal Geometry, and Stochastic Processes, Ph.D. Thesis, University of Western Ontario (2003).
[17] Y. Chen, Y. Yan and K. Zhang, On the local fractional derivative, J. Math. Anal. Appl., 362 (2010), 17-33.
[18] T. Christoph, Further remarks on mixed fractional Brownian motion,, Appl. Math. Sci., 38 (2009), 1885-1901.
[19] D. Baleanu, H. K. Jassim, M. Al Qurashi, Approximate Analytical Solutions of Goursat Problem within Local Fractional Operators, Journal of Nonlinear Science and Applications, 9 (2016) 4829-4837.
[20] X.J Yang, Local Fractional Functional Analysis and Its Applications, Asian Aca-demic publisher Limited, Hong Kong (2011).
[21] S. P. Yan, H. Jafari, and H. K. Jassim, Local Fractional Adomian Decomposition and Function Decomposition Methods for Solving Laplace Equation within Local Fractional Operators, Advances in Mathematical Physics, 2014 (2014), 1-7.
[22] H. Jafari and H. K. Jassim, Local Fractional Variational Iteration Method for Nonlinear Partial Differential Equations within Local Fractional Operators, Ap-plications and Applied Mathematics, 10 (2015), 1055-1065.
[23] S. Xu, X. Ling, Y. Zhao and H. K. Jassim, A Novel Schedule for Solving the Two-Dimensional Diffusion in Fractal Heat Transfer, Thermal Science, 19 (2015),99-103.
[24] H. Jafari, H. K. Jassim, F. Tchier and D. Baleanu, On the Approximate Solu-tions of Local Fractional Differential Equations with Local Fractional Operator,Entropy, 18 (2016), 1-12.
[25] X. J. Yang, D. Baleanu, and W. P. Zhong, Approximation solutions for diffusion equation on Cantor time-space, Proceeding of the Romanian Academy, 14 (2013),127-133.
[26] Y. J. Yang, and S. Q. Wang and H. K. Jassim, Local Fractional Function De-composition Method for Solving Inhomogeneous Wave Equations with Local Frac-tional Derivative, Abstract and Applied Analysis, 2014 (2014), 1-7.
[27] H. K. Jassim, C. Unlu, S. P. Moshokoa, C. M. Khalique, Local Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets within Local Fractional Operators, Mathematical Problems in Engineering, 2015 (2015), 1-9.