Prime and semiprime l-fuzzy soft bi-hyperideals

Document Type : Research Paper

Authors

1 Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

2 Department of Statistics, University of Gujrat, Gujrat, Pakistan

Abstract

In this paper, the conception of prime (semiprime) Lfuzzy soft bi-hyperideals, strongly prime L-fuzzy soft bi-hyperideals, irreducible (strongly irreducible) L-fuzzy soft bi-hyperideals of a semihypergroup S is introduced, where L is a complete bounded distributive lattice. Using the properties of these L-fuzzy soft bihyperideals some characterizations of regular and intra regular semihypergroups are given.

Keywords


[1] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726–2735.
[2] M. I. Ali, A note on soft sets, rough soft sets and fuzzy soft sets, Appl. Soft comput., 11, (2011), 3329–3332.
[3] M. I. Ali, F. Feng, X. Liu., W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57, (2009), 1547–1553.
[4] M. I. Ali, M. Shabir and M. Naz, Algebraic structures of soft sets associated with newoperations, Comput. Math. Appl., 61, (2011), 2647–2654.
[5] M. I. Ali, M. Shabir and Samina, Application of L-fuzzy soft set to semirings, J. Intelligent and Fuzzy Systems, 27, (2014), 1731–1742.
[6] D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wong, The parametrization reduc-tion of soft sets and its applications, Comput. Math. Appl., 49, (2005), 757–763.
[7] P. Corsini and V. Leoreanu, Applications of hyperstructures theory, Kluwer Acamedic Publishers Dordrecht, (2003).
[8] P. Corsini, M. Shabir and T. Mahmood, Semisimple semihypergroups in terms of hyperideals and fuzzy hyperideals, Iranian Journal of Fuzzy Systems, 2011, (8),95–111.
[9] B. Davvaz, Fuzzy hyperideals in semihypergroups, Italain J. Pure and Appl. Math., 8, (2000), 67–74.
[10] B. Davvaz, Intuintionistic fuzzy hyperideals of semihypergroups, Bull. Malays.Math., 8, (2006), 203–207.
[11] F. Feng, X. Jun, B. Liu and L. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math., 234, (2010), 10–20.
[12] F. Feng, Y. B. Jun and v. Zhao, Soft semirings, Comput. Math. Appl., 56,(2008), 2621–2628.
[13] F. Feng, C. Li, B. Davvaz and M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput., 14, (2010), 899–911.
[14] F. Feng, X. Liu, V. Leoreanu-Fotea and Y. B. Jun, Soft sets and rough sets, Inform. Sci., 181, (2011), 1125–1137.
[15] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18, (1967), 145–174.
[16] A. Hasankhani, Ideals in semihypergroups and Green’s relations, Ratio Mathe-matics, 13, (1999), 29–36.
[17] H. Hedayati, Fuzzy ideals of semirings, Neural Comput. Applic., 20, (2011),1219–1228.
[18] M. Koskas, Groupoides demi-hypergroups et hypergroups, J. Math. pures Appl.,49, (1970), 155–192.
[19] N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy sets syst, 8, (1982),71–79.
[20] Z. Li, D.Zheng and J.Hao,L-fuzzy soft sets based on complete Boolean lattices,Comput.Math.Appl.,64,(2012),2558–2574.
[21] T. Mahmood, M. Shabir, S. Bashir and S. Ayub, Regular and Intra-regular Semi-hypergroups in terms of L-fuzzy soft sets, Submitted.
[22] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9, (2001),589–602.
[23] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl., 45,(2003), 555–562.
[24] F. Marty, Sur une generalization de la notion de group, in: Proc. 8th Congress Mathematics Scandenaves. Stockholm, (1934), 45–49.
[25] D. Molodtsov, Soft set theory-first result, Comput. Math. Appl., 37, (1999),19–31.
[26] S. Naz and M. Shabir, On prime soft bi-hyperideals of semihypergroups, J. Intel-ligent and fuzzy systems, 26, (2014), 1539–1546.
[27] S. V. Onipchuk, Regular semihypergroups, Mat. Sb. 183, (1992),43–54. transltion in Russian Acad. Sci. Sb. Math., 76, (1993), 155–164.
[28] D. Pei and D. Miao, From soft sets to information systems, Proc. IEEE Int. Conf. Granular Comput., 2, (2005),19–31.
[29] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35, (1971), 512–517.
[30] A. R. Roy and P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 203, (2007), 412–418.
[31] A. Sezgin and A. O. Atagun, On operations of soft sets, Comput. Math. Appl.,61, (2011), 1457–1467.
[32] M. Shabir and M. Ghafoor, On L-fuzzy soft semigroups, Annals of Fuzzy Math-ematics and Informatics, 8, (2014), 1027–1044.
[33] M. Shabir, S.Ayub and S.Bashir,Application of L-fuzzy soft sets in semihyper-groups,J.Adv.Math.Stud.,10,(2017),367–385.
[34] M. Shabir and R. S. Kanwal, On L-fuzzy soft ideals of nearrings, Annals of fuzzy Mathematics and Informatics, 10, (2015), 161–180.
[35] B. Tanay and M. B. Kandemir, Topological structure of fuzzy soft sets, Comput.Math. Appl., 61, (2011), 2952–2957.
[36] X. Yang, T. Lin, J. Yang, Y. Li and D. Yu, Combination of interval-valued fuzzy sets and soft sets, Comput. Math. Appli., 58, (2009), 521–527.
[37] L. A. Zadeh, Fuzzy sets, Inform. Control., 8, (1965), 338–353.
[38] J. Zhan, B. Davvaz and K. P. Shum, A new view of fuzzy hypernearrings, Inform. Sci., 178, (2008), 425–438.