Some results on the topology of fuzzy metric type spaces

Document Type : Research Paper

Authors

1 Mathematics Department, Mugla Stk Kocman University, 48000, Mugla, Turkey

2 Department of Mathematics, Graduate School of Natural and Applied Sciences, Mu˘gla Sıtkı Ko¸cman University, P.O.Box 48000, Mu˘gla, Turkey

Abstract

In this study, we investigate the concept of fuzzy metric type spaces. We show that s < Kt implies M(x, y, s) ≤ M(x, y, t). After emphasizing the fact that M(x, y, ) may not be nondecreasing for a fuzzy metric type space, we prove that intersection of two open sets is open. We give examples to show that open balls are not necessarily open and closed balls are not necessarily closed. Moreover, we show that these spaces are sequential, Fr´echet and weakly first countable. 

Keywords


[1] A. V. Arhangel’skii, Mappings and spaces, Russian Math. Surveys 21 (1966),115–162.
[2] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399.
[3] B. Schweizer, A. Sklar, Statistical metric spaces, Pasific J. Maths. 10 (1960),314-334.
[4] Deng Zi-ke, Fuzzy pseudo metric spaces, J. Math. Anal. Appl. 86 (1982), 74–95.
[5] F. Siwiec, On defining a space by a weak-base, Pac. J. Math. 52(1) (1974), 233–245.
[6] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces (Russian), Func An, Gos Ped Inst Unianowsk 30 (1989), 26–37.
[7] L.A. Zadeh, Fuzzy sets, Inform. and Control. 8 1965, 338-353.
[8] M.A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979),205–230.
[9] M.A.Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal.73 (2010), 3123–3129.
[10] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215–229.
[11] O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326–334.
[12] P. Kumam, N.V. Dung, V.T.L. Hang, Some equivalences between cone b-metric spces and b-metric spaces, Abstr. Appl.Anal. 2013 (2013), 1–8.
[13] R. Saadati, On the Topology of Fuzzy Metric Type Spaces, Filomat 29(1) (2015),133–141.
[14] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math Inform Univ Ostraviensis 1(1) (1993), 5–11.
[15] S.P. Franklin, Spaces in which sequences suffice, Fundam. Math. 57 (1965), 107–115.
[16] S.P. Franklin, Spaces in which sequences suffice II, Fundam. Math. 61 (1967),51–56.
[17] T.V. An, L.Q. Tuyen, N.V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl. 185–186 (2015), 50–64.
[18] T.V. An, N.V. Dung, Remarks on Frink’s metrization technique and applications, arXiv:1507.01724v4 [math.GN].