[1] A. V. Arhangel’skii, Mappings and spaces, Russian Math. Surveys 21 (1966),115–162.
[2] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399.
[3] B. Schweizer, A. Sklar, Statistical metric spaces, Pasific J. Maths. 10 (1960),314-334.
[4] Deng Zi-ke, Fuzzy pseudo metric spaces, J. Math. Anal. Appl. 86 (1982), 74–95.
[5] F. Siwiec, On defining a space by a weak-base, Pac. J. Math. 52(1) (1974), 233–245.
[6] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces (Russian), Func An, Gos Ped Inst Unianowsk 30 (1989), 26–37.
[7] L.A. Zadeh, Fuzzy sets, Inform. and Control. 8 1965, 338-353.
[8] M.A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979),205–230.
[9] M.A.Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal.73 (2010), 3123–3129.
[10] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215–229.
[11] O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326–334.
[12] P. Kumam, N.V. Dung, V.T.L. Hang, Some equivalences between cone b-metric spces and b-metric spaces, Abstr. Appl.Anal. 2013 (2013), 1–8.
[13] R. Saadati, On the Topology of Fuzzy Metric Type Spaces, Filomat 29(1) (2015),133–141.
[14] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math Inform Univ Ostraviensis 1(1) (1993), 5–11.
[15] S.P. Franklin, Spaces in which sequences suffice, Fundam. Math. 57 (1965), 107–115.
[16] S.P. Franklin, Spaces in which sequences suffice II, Fundam. Math. 61 (1967),51–56.
[17] T.V. An, L.Q. Tuyen, N.V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl. 185–186 (2015), 50–64.
[18] T.V. An, N.V. Dung, Remarks on Frink’s metrization technique and applications, arXiv:1507.01724v4 [math.GN].