The Hv-matrix representations

Document Type : Research Paper

Author

DemocrDepartment of Mathematics, Democritus University of Thrace, P.O.Box 68100, Alexandroupolis, Greeceitus University of Thrace

Abstract

The Theory of Representations of Hyperstructures was started in mid 80’s but that time there was not any general definition of hyperfield. The Hv-structures, were introduced in 4th AHA Congress 1990, and at the same time, the general definition of the hyperfield, was given. Since then the Theory of Representations is refereed mainly on Hv-groups by Hv-matrices. In Hv-structures the weak axioms replace the ”equality” by the ”non empty intersection”. The characteristic property of Hv-structures, is that a partial order on Hv-structures on the same underline set, is defined. The weak properties increase extremely the number of hyperstructures defined in the same set. In representation theory the researchers have to treat well almost all the classical algebraic structures from semigroups to Lie-algebras. We present the problems, some new results and we give to researchers open problems in mathematics from hyperstructures. 

Keywords


[1] P. Corsini, V. Leoreanu, Application of Hyperstructure Theory, Klower Ac. Publ.,(2003).
[2] P. Corsini, T. Vougiouklis, From groupoids to groups through hypergroups, Rend. Mat. VII, 9, (1989), 173–181.
[3] B. Davvaz, On Hv-rings and Fuzzy Hv-ideals, J. Fuzzy Math.V.6,N.1, (1998), 33–42.
[4] B. Davvaz, Polygroup Theory and Related Systems, World Scientific, 2013.
[5] B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, Int. Acad. Press, USA, 2007.
[6] B. Davvaz, R.M. Santilli, T. Vougiouklis, Algebra, Hyperalgebra and Lie-Santilli Theory, J. Generalized Lie Theory Appl., (2015), 9:2, 1–5.
[7] Davvaz B., Vougioukli S., Vougiouklis T., On the multiplicative Hv-rings derived from helix hyperoperations, Util. Math., 84, (2011), 53–63.
[8] M. Koskas, Groupoides demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49 (9), 1970, 155–192.
[9] R.M. Santilli, Hadronic Mathematics, Mechanics and Chemistry, Volumes I, II, III, IV and V, Int. Academic Press, USA, (2007).
[10] R.M. Santilli, T. Vougiouklis, Isotopies, Genotopies, Hyperstructures and their Applications, New frontiers in Hyperstructures, Hadronic, (1996), 1–48.
[11] T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Un. Car.-Math. Et Ph., V.22, N1, (1981), 3–6.
[12] T. Vougiouklis, Representations of hypergroups, Hypergroup algebra, Proc. Con-vegno: Ipergrouppi, altre strutture, Udine, (1985), 59–73.
[13] T. Vougiouklis, Generalization of P-hypergroups, Rend. Circolo Mat. Palermo, Ser.II, 36, (1987), 114–121.
[14] T. Vougiouklis, Representations of hypergroups by hypermatrices, Rivista Mat. Pura Appl., N 2, (1987), 7–19.
[15] T. Vougiouklis, Groups in hypergroups, Annals Discrete Math.37, (1988), 459-4-68.
[16] T. Vougiouklis, The very thin hypergroups and the S-construction, Combina-torics’88, Inc. Geom. Comb. Str., 2, (1991), 471–477.
[17] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield,4th AHA, Xanthi 1990, World Scientific, (1991), 203–211.
[18] T. Vougiouklis, Representations of hypergroups by generalized permutations, Al-gebra Universalis, 29, (1992), 172–183.
[19] T. Vougiouklis, Representations of Hv-structures, Proc. Int. Conf. Group Theory 1992, Timisoara, 1993, 159–184.
[20] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc,1994.
[21] T. Vougiouklis, Some remarks on hyperstructures, Contemporary Math., Amer. Math. Society, 184, (199)5, 427–431.
[22] T. Vougiouklis, Hv-groups defined on the same set, Discrete Math., 155, (1996), 259–265.
[23] T. Vougiouklis, Convolutions on WASS hyperstructures, Discrete Math., 174, (1997), 347–355.
[24] T. Vougiouklis, Enlarging Hv-structures, Algebras Comb., ICAC’97, Hong Kong, Springer, (1999), 455–463.
[25] T. Vougiouklis, On Hv-rings and Hv-representations, Discrete Math., Elsevier, 208/209, (1999), 615–620.
[26] T. Vougiouklis, Hv-Lie algebras and h/v-Lie algebras, Honorary I. Mittas, Aris-totle Un. Thessaloniki, (2000), 619–628.
[27] T. Vougiouklis, Finite Hv-structures and their representations, Rend. Sem. Mat.Messina, S II, V9, (2003), 245–265.
[28] T. Vougiouklis, The h/v-structures, J. Discrete Math. Sci. Cryptography, V.6,(2003), N.2-3, 235-243.
[29] T. Vougiouklis, A hyperoperation defined on a groupoid equipped with a map,Ratio Mat., N.1, (2005), 25–36.
[30] T. Vougiouklis, ∂-operations and Hv-fields, Acta Math. Sinica, English S., V.23, 6, (2008), 965–972.
[31] T. Vougiouklis, The e-hyperstructures, J. Mahani Math. Research Center, V.1, N.1, 2012, 13–28.
[32] T. Vougiouklis,The Lie-hyperalgebras and their fundamental relations,Southeast Asian Bull.Math.,V.37(4),(2013),601–614.
[33] T. Vougiouklis, From Hv-rings to Hv-fields, Int. J. Alg. Hyp. Appl. Vol.1, No.1,2014, 1–13.
[34] T. Vougiouklis, Enlarged Fundamentally Very Thin Hv-structures, J. Algebraic Str. Their Appl.(ASTA),V.1,No1,(2014),11-20.
[35] T. Vougiouklis, Hypermatrix representations of finite Hv-groups, European J. Comb., V.44 B, (2015), 307–315.
[36] T. Vougiouklis, Hypermathematics, Hv-structures, hypernumbers, hypermatrices and Lie-Santilli admissibility, American J. Modern Physics,4(5), (2015), 34–46.
[37] T. Vougiouklis, On the Hyperstructure Theory, Southeast Asian Bull. Math., Vol. 40(4), 2016, 603–620.
[38] T. Vougiouklis, Hypernumbers, Finite Hyper-fields, AGG, V.33, N.4, (2016), 471-490.
[39] T. Vougiouklis, P. Kambakis-Vougiouklis, Bar in Questionnaires, Chinese Business Review, V.12, N.10, (2013), 691–697.
[40] T. Vougiouklis, S. Vougiouklis, Hyper-representations by non square matrices. Helix-hopes, American J. Modern Physics, 4(5), (2015), 52–58.