[1] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, Academic Press, New York,(1974). [2] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. [3] K.S. Cole, Electric conductance of biological systems, in: Proc. Cold Spring Harbor Symp. Quant. Biol, Cold Spring Harbor, New York (1993), 107–116. [4] R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys Rep 339(1) (2000), 1-77.
[5] M. Raberto, E. Scalas, F. Mainardi, Waiting-times and returns in high-frequency financial data: an empirical study, Physica A: Statistical Mechanics and its Ap-plications 314 (1) (2002), 749-755.
[6] Schumer. R., Meerschaert. M. and Baeumer. B., Fractional advectiondispersion equations for modeling transport at the earth surface, J. Geophys. Res.: Ea. Surf., 114 (2009) No. 4, Article ID F00A07.
[7] D. Baleanu, J.A. Tenreiro Machado, A.C.J. Luo, Fractional dynamics and con-trol, Springer, New York, 2012.
[8] B. Guo, X. Pu, F. Huang, Fractional partial differential equations and their numerical solutions, World scientific, Singapore, (2015).
[9] A. Babaei, S. Banihashemi, A Stable Numerical Approach to Solve a Time-Fractional Inverse Heat Conduction Problem, Iranian Journal of Science and Technology, Transactions A: Science (2017), DOI: 10.1007/s40995-017-0360-4.
[10] S. R. Arridge and J. C. Schotland, Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009).
[11] J.V. Beck, B. Blackwell and C.R. Clair, Inverse Heat Conduction: Ill-Posed Problems, New York, (1985).
[12] M. Prato, L. Zanni, Inverse problems in machine learning: an application to brain activity interpretation, Journal of Physics: Conference Series 135 (2008) 012085.
[13] B. Jin, W. Rundell, A tutorial on inverse problems for anomalous diffusion pro-cesses, Inverse problems, 31 (2015) 035003.
[14] D. A. Murio, Time fractional IHCP with Caputo fractional derivatives, Comput-ers and Mathematics with Applications,
56 (2008), 2371-2381.
[15] A. Taghavi, A. Babaei, A. Mohammadpour, A stable numerical scheme for a time fractional inverse parabolic equation, Inverse Probl Sci Eng. 25 (10) (2017),1474–1491.
[16] D.A. Murio, Mollification and space marching, in: K. Woodbury (Ed.), Inverse Engineering Handbook, CRC Press, Boca Raton, FL, (2002).
[17] D.A. Murio, On the stable numerical evaluation of Caputo fractional derivatives, Computers and Mathematics with Applications, 51, (2006), 1539–1550.