[1] Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stress, J. Therm. Stresses, 28 (2005) 83-102.
[2] D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus, Philos.Trans. R. Soc. A, 371 (2013) 1-10.
[3] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientic, 2014.
[4] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2) (2001) 153-192.
[5] P. Zhuang, F. Liu, Implicit difference approximation for the time fractional dif-fusion equation, J. Appl. Math. Comput., 22 (3) (2006) 87-99.
[6] S. Momani, Z. Odibat, Numerical solutions of the space-time fractional advec-tiondispersion equation, Numer. Methods Partial Differ. Equ., 24 (6) (2008)1416-1429.
[7] A. Taghavi, A. Babaei, A. Mohammadpour, A coupled method for solving a class of time fractional convection-diffusion equations with variable coefficients, Comp. Math. Modeling, 28 (1) (2017).
[8] A. babaei, A new accurate approach to solve the Cauchy problem of the Kolmogorov-PetrovskiiPiskunov equations, Int. J. App. Comp. Math., (2017) 1-14.
[9] A. babaei, A. Mohammadpour, Solving an inverse heat conduction problem by reduced differential transform method, New Trends in Mathematical Sciences, 3 (3) (2015) 65-70.
[10] J. K. Zhou, Differential transform and its applications for electrical circuits, Huazhong University Press, Wuhan, China, 1986.
[11] C.K. Chen, S.H. Ho, Solving partial dierential equations by two-dimesional dier-ential transform method, Appl. Math. and Comput., 106 (1999) 171-179.
[12] Y. Keskin, G. Oturanc, Reduced Differential Transform Method for partial dif-ferential equations, Inter. Jour. Nonl. Scie. Num. Simu., 6 (10) (2009) 741-749.
[13] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015) 57-66.
[14] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65-70.
[15] Shidfar, A., Garshasbi, M., A weighted algorithm based on Adomian decomposi-tion method for solving an special class of evolution equations, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009) 1146-1151.