Ricci-Bourguignon soliton on three dimensional para-Sasakian manifold

Document Type : Research Paper

Authors

1 Department of mathematics, Jnana bharathi campus Banglore Banglore, India

2 Department of Mathematics, Bangalore university, Bengalure, India

Abstract

In the present paper we study Ricci-Bourguignon solitons on three dimensional para-Sasakian manifolds with potential vector field as a special vector field. We proved the conditions for such manifold to be isometric to hyperbolic space. Further, the nature of RB-soliton based on the value of real numbers $\rho$ is investigated.

Keywords

Main Subjects


[1] J. P. Bourguignon, Ricci curvature and Einstein metrics, Global di erential geometry and Global Analysis , Lecture notes in mathematics, 838 (1981), 42-63.
[2] G. Catino, The Ricci-Bourguinon  ow, Pac., J., Math., 287 (2017) 337-370.
[3] S. Deweidevi and D. S. Patra, Some results on almost *-Ricci-Bourguignon solitons, J. of geometry and Physics, 178 (2022), 104519.
[4] Y. Dogur, 􀀀 Ricci- Bourguignon solitons with a semi-symmetric non-metric connection, AIMS, Mathematics, 8 (2023), 11943-11952.
[5] K. De, A note on gradient solitons on para-Sasakian manifold, Balkan Society of Geometers, Geometry Balkan Press, 28 (2021), 20-29.
[6] K. Duggal, Ane conformal vector  elds in semi-Riemannian manifolds, Acta Applicandae Mathematicae 23 (1991), 275-294.
[7] I. K. Erken, Yamabe solitons on three-dimesional normal almost paracontact metric manifolds, Periodica Mathematica Hungarica, 80, (2020), 172-184.
[8] M. Kahatari, J. Prakash, Ricci-Bouruignon soliton on three dimesional contact metric manifold, Mediterreanen J. of Mathematics, 21 (2024).
[9] S. Kaneyuki, F. L. Williams, Almost paraconatct manifoldsand parahodge structure on manifold, Nagyog Math J., 99 (1985), 93-103.
[10] A. Mandal and A. Das, On pseuo-projective curvature tensor of Sasakian manifold admitting Zamkovy connection, Journal of Hyperstructures, 10 (2021), 172-191.
[11] D. Perrone, Calvaruso, Geometry of H-paracontact metric manifold, Publ. Math. Debr., 86 (2015), 325-346.
[12] D. G. Prakash, M. R. Amruthalakshmi and Y. J Suh, Geometric characterizations of almost Ricci-Bourguinon solitons on Kenmotsu manifold, Filomat, 38 (2024) 861-871.
[13] K. Raghujyothi, A. Das, S. Ranjith, and A. Biswas, Riemannian soliton in para-Sasakian manifolds admitting semi-symmetric structure, Journal of Hyperstructures, 11 (2022), 304-314.
[14] I. Sato, On a structure similar to almost contact structure, Indian Tensor N. S., 30 (1976), 219-224.
[15] M. Walker, R. Penrose, On quadratic  rst integrals of the geosesic equation for type f22g spacetimes, Comm. in Math. Phy., 18 (1970), 265-274.
[16] S. Roy, D. Santu, Study of Sasakian manifolds admitting *-Ricci-Bourguignon solitons with Zamkovy connection, Annali Delli universita di Ferrara sezione7 scienze mathematiche, 4 (2024), 10.1007/s11565-023-00467-4.
[17] K. Yano, Integral formula in Riemannian geometry, Marcel, Dekker, 1970.
[18] K. Yano and M. Kon, On torse-forming direction in Riemannian space, Mathematical Institute, Tokyo Imperial University, 20 (1944), 340-345.
[19] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob.Anal. geom., 36 (2009), 37-60.