Some solitons on anti-invariant submanifold of LP-Kenmotsu manifold admitting Zamnovoy connection

Document Type : Research Paper

Authors

1 Raiganj Surendranath Mahavidyalaya

2 Department of Mathematics, Raiganj Surendranath Mahavidyalaya, Raiganj, west Bengal, India

Abstract

In this paper we prove some curvature properties of anti-invariant submanifold of Lorentzian para-Kenmotsu manifold (briefly, LP-Kenmotsu manifolds) with respect to Zamkovoy connection (∇∗). Next, we study Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold with respect to Zamkovoy connection. Further, we study η-Einstein soliton on this submanifold with respect to Zamkovoy connection under different curvature conditions. Finally, we give an example of anti-invariant submanifold of 5-dimensional LP-Kenmotsu manifold admitting η-Einstein soliton with respect to ∇∗ and verify a relation on it.

Keywords

Main Subjects


[1] A. Biswas, and K. K. Baishya, Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection, Bulletin of the Transilvania University of Brasov, 12(2) (2019), 233-246.
[2] A. Biswas, and K. K. Baishya, A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Scienti c Studies and Research Series Mathematics and Informatics, 29(1) (2019), 59-72.
[3] A. M. Blaga,Canonical connections on para-Kenmotsu manifolds, Novi Sad J. Math., 45(2) (2015), 131-142.
[4] A. M. Blaga, On Gradient -Einstein solitons, Kragujev. J. Math., 42(2) (2018), 229-237.
[5] G. Catino and L. Mazzieri, Gradient Einstein Solitons, Nonlinear Anal., 132 (2016), 66-94.
[6] V. Chandra and S. Lal,On 3-dimensional Lorentzian para-Kenmotsu manifolds, Di . Geo. Dynamical System, 22 (2020), 87-94.
[7] A. Das and A. Mandal, Study of Ricci solitons on concircularly  at Sasakian manifolds admitting Zamkovoy connection, The Aligarh Bull. of Math., 39(2) (2020), 47-61.
[8] R. S. Hamilton, The Ricci  ow on surfaces, Math. and General Relativity, American Math. Soc. Contemp. Math., 7(1) (1988), 232-262.
[9] A. Hasseb, and R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bol. Soc. Paran. Math., 39(3) (2021), 201-220.
[10] P. Karmakar, -Ricci-Yamabe soliton on anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection, Balkan J. Geom. Appl., 27(2) (2022), 50-65.
[11] P. Karmakar and A. Bhattyacharyya, Anti-invariant submanifolds of some inde nite almost contact and para-contact manifolds, Bull. Cal. Math. Soc., 112(2) (2020), 95-108.
[12] W. Kuhnel, Conformal transformations between Einstein spaces, Aspects Math., 12 (1988), 105-146.
[13] A. Mandal, A. and A. Das, On M-Projective Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection, Adv. Math. Sci. J., 9(10) (2020), 8929-8940.
[14] A. Mandal, A. and A. Das, Projective Curvature Tensor with respect to Zamkovoy connection in Lorentzian para Sasakian manifolds, J. Indones. Math. Soc., 26(3) (2020), 369-379.
[15] A. Mandal, A. and A. Das, Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection, Bull. Cal. Math. Soc., Vol. 112(5) (2020), 431-450.
[16] A. Mandal, A. and A. Das, LP-Sasakian manifolds requipped with Zamkovoy connection in Lorentzian para Sasakian manifolds, J. Indones. Math. Soc., 27(2) (2021), 137-149.
[17] A. Mandal, A. H. Sarkar and A. Das, Zamkovoy connection on Lorentzian para-Kenmotsu manifolds, Bull. Cal. Math. Soc., 114(5) (2022), 401-420.
[18] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
[19] H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathematical Analysis, 3(2) (2012), 18-24.
[20] H. B. Pandey and A. Kumar, Anti-invariant submanifolds of almost para-contact manifolds, Indian J. Pure Appl. Math., 20(11) (1989), 1119-1125.
[21] V. V. Reddy, R. Sharma and S. Sivaramkrishan, Space times through Hawking-Ellis construction with a back ground Riemannian metric, Class Quant. Grav., 24 (2007), 3339-3345.
[22] K. L. Sai Prasad, S. Sunitha Devi and G. V. S. R. Deekshitulu, On a class of Lorentzian para-Kenmotsu manifolds admitting the Weyl-projective curvature tensor of type (1,3), Italian J. Pure & Applied Math., 45 (2021), 990-1001.
[23] I. Sato, On a structure similar to the almost contact structure II, Tensor N. S., 31 (1977), 199-205. 
[24] R. Sharma, Certain results on K-contact and (k; )-contact manifolds, J. of Geometry., Vol. 89 (2008), 138-147.
[25] N. V. C. Sukhla and A. Dixit, On  -recurrent Lorentzian para-Kenmotsu manifolds, Int. J. of Math. and Com. App. Research, 10(2) (2020), 13-20.
[26] M. M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222 vl [math. D. G.], (2008).
[27] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, 32 (1953).
[28] K. Yano and M. Kon, Anti-invariant submanifolds of Sasakian space forms I, Tohoku Math. J., 1 (1977), 9-23.
[29] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo, 16 (1940), 195-200.
[30] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36(1) (2008), 37-60.