On the Seidel Laplacian spectrum of threshold graphs

Document Type : Research Paper

Authors

1 Mathematics department, K K T M Government College, Pullut, India

2 Mathematics Department, St. Mary's College, Thrissur, India

Abstract

A graph which does not contain C4, P4, or 2K2 as its induced subgraphs, is called a threshold graph. In this paper, we consider seidel laplacian matrix of a connected threshold graph and determine the seidel laplacian spectrum. Also, the characterization of threshold graphs having atmost four distinct seidel laplacian eigenvalues have been computed.

Keywords

Main Subjects


[1] D. D. Anderson, Weakly prime ideals, Houston J. Mathematics, 29 (2003), 831-840.
[2] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
[3] A. Youse an Darani, Y. Khedmati Yengejeh, H. Pakmanesh and G. Navarro, Image encryption algorithm based on a new 3D chaotic system using cellular automata, Chaos, Solitons and Fractals, 179 (2024), 114-131.
[4] A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer, Heidelberg, 2012. 
[5] V.N. Mahadev and U.N. Peled, Threshold Graphs and Related Topics, Elsevier, 1995.
[6] P.B. Henderson and Y. Zalcstein, A graph-theoretic characterization of the PV class of synchronizing primitives, SIAM J. Comput., 6 (1977), 88-108.
[7] R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discr. Math., 7 (1994), 221-229.
[8] R. Grone, R. Merris and V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl., 11 (1990), 218-238.
[9] J. H. Van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, Indag. Math., 28 (1966), 335-348.
[10] W. H. Haemers, Seidel switching and graph energy, MATCH Communications in Mathematical and in Computer chemistry, 68 (2012), 653-659.
[11] H.S. Ramane, R.B. Jummannaver and I. Gutman, Seidel Laplacian energy of graphs, Int. J. Appl. Graph Theory, l (2017), 74-82.
[12] R.B. Bapat, On the adjacency matrix of a threshold graph, Linear Algebra Appl., 439 (2013), 30083015.
[13] D.P. Jacobs, V. Trevisan and F. Tura, Eigenvalue location in threshold graphs, Linear Algebra Appl., 439 (2013), 27622773.
[14] D. P. Jacobs, V. Trevisan and F. Tura, Eigenvalues and energy in threshold graphs, Linear Algebra Appl., 465 (2015), 412-425.
[15] D. P. Jacobs, V. Trevisan and F. Tura, Computing the Characteristic Polynomial of Threshold Graphs, J. Graph Algorithms and Appl., 18 (2014), 709-719.
[16] A. Banerjeea and R. Mehataria, On the normalized spectrum of threshold graphs, Linear Algebra Appl., 530 (2017), 288-304.
[17] C.D. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, Berlin, 2001.
[18] I. Gutman and B. Furtula, Survey of graph energies, Math. Interdisc. Res., 2 (2017), 85-129.
[19] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl., 197-198 (1994), 143-176.
[20] R. Merris, A survey of graph Laplacians, Linear Multilin. Algebra, 39 (1995), 1931.
[21] Y. Alavi, G. Chartrand, O. R. Oellermann and A. J. Schwenk, Graph Theory, Combinatorics and Applications, Wiley, New York, 1991, 871-898.
[22] I. Sciriha and S. Farrugia, On the spectrum of threshold graphs, ISRN Discrete Math., 1 (2011), https://doi.org/10.5402/2011/108509.
[23] E. Ghorbani, Eigenvalue-free interval for threshold graphs, Linear Algebra Appl., 583 (2019), 300-305.
[24] L. Lu, Q.X. Huang and Z.Z. Lou, On the distance spectra of threshold graphs, Linear Algebra Appl., 553 (2018), 223-237.
[25] C.O. Aguilar, M. Ficarra, N. Schurman and B. Sullivan, The role of the anti-regular graph in the spectral analysis of threshold graphs, Linear Algebra Appl., 588 (2020), 210-223.