[1] H. An and S. Deng, Invariant ( ; )-metric on homogeneous manifolds, Monatsh. Math., 154, (2008), 89-102.
[2] M. L. Barberis, Hypercomplex structures on four-dimensional Lie groups, Proc. Am. Math. Soc., 125, (1997), 1043-1054.
[3] Boyer and P. Charles, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc., 102 (1), (1988), 157-164.
[4] S. Deng, M. Hosseini, H. Liu and H. R. Salimi Moghaddam, On the left invariant ( ; )-metrics on some Lie groups, Houston J. Math., 45 (4), (2019), 1071-1088.
[5] M. Ebrahimi and D. Lati , On ag curvature and homogeneous geodesics of left invariant Randers metrics on the semidirect product a p r, Journal of Lie Theory, 29 (3), (2019), 619-627.
[6] S. Kobayashi and K. Nomizu, Foundations of di erential Geometry, Interscience Publishers, 1969.
[7] O. Kowalski and J. Szenthe, On the Existence of Homogeneous Geodesics in Homogeneous Riemannian manifolds, Geom. Dedicata, 81, (2000), 209-214.
[8] D. Lati , Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys., 57, (2007), 1421-1433.
[9] D. Lati and A. Razavi, Homogeneous geodesics of left invariant Randers metrics on a three-dimensional Lie group, Int. J. Contemp. Math. Sciences, 4 (18), (2009), 873-881.
[10] D. Lati and M. L. Zeinali, Geodesic vectors of invariant (α, β)-metrics on nilpotent Lie groups of five dimensional, Caspian Journal of Mathematical Sciences, 12 (2) (2023), 211-223.
[11] M. Matsumoto, Theory of Finsler spaces with ( ; )-metric, Rep. Math. Phys., 31, (1992), 33-65.
[12] X. H. MO, An Introduction to Finsler Geometry, Vol.1, World Scienti c Publishing Co. Pte. Ltd., 2006.
[13] M. Obata, Ane connections on manifolds with almost complex quaternion or Hermitian structure, Jap. J. Math, 26, (1956), 43-79.
[14] M. Parhizkar and D. Lati , Geodesic vectors of Randers metrics on nilpotent Lie groups of dimension ve, Global. J. Adv. Res. Class. Moder. Geom, 7, (2018), 92-101.
[15] M. Parhizkar and D. Lati , On invariant Matsumoto metrics, Vietnam Journal of Mathematics, 47, (2019), 355-365.
[16] M. L. Zeinali, Geodesic vectors of in nite series ( ; )-metric on hypercomplex four dimensional Lie groups, Journal of Finsler Geometry and its Applications, 4 (2), (2023), 103-112.