Geodesic vectors of (α, β)-metrics on hypercomplex 4-dimensional Lie groups

Document Type : Research Paper

Authors

Department of Mathematics, Faculty of Basic Sciences, University of Mohaghegh Ardabili, P.O.Box. 5619911367, Ardabil, Iran.

Abstract

In this paper, we consider invariant (α, β)-metrics and describe all geodesic vectors and investigate the set of all homogeneous geodesics on left invariant hypercomplex four dimensional simply connected Lie groups. Also, we study the conditions for the Douglas and Berwald type of (α, β)-metrics on the left invariant hypercomplex four dimensional simply connected Lie groups.
 

Keywords

Main Subjects


[1] H. An and S. Deng, Invariant ( ;  )-metric on homogeneous manifolds, Monatsh. Math., 154, (2008), 89-102.
[2] M. L. Barberis, Hypercomplex structures on four-dimensional Lie groups, Proc. Am. Math. Soc., 125, (1997), 1043-1054.
[3] Boyer and P. Charles, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc., 102 (1), (1988), 157-164.
[4] S. Deng, M. Hosseini, H. Liu and H. R. Salimi Moghaddam, On the left invariant ( ;  )-metrics on some Lie groups, Houston J. Math., 45 (4), (2019), 1071-1088.
[5] M. Ebrahimi and D. Lati , On  ag curvature and homogeneous geodesics of left invariant Randers metrics on the semidirect product a p r, Journal of Lie Theory, 29 (3), (2019), 619-627.
[6] S. Kobayashi and K. Nomizu, Foundations of di erential Geometry, Interscience Publishers, 1969. 
[7] O. Kowalski and J. Szenthe, On the Existence of Homogeneous Geodesics in Homogeneous Riemannian manifolds, Geom. Dedicata, 81, (2000), 209-214.
[8] D. Lati , Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys., 57, (2007), 1421-1433.
[9] D. Lati  and A. Razavi, Homogeneous geodesics of left invariant Randers metrics on a three-dimensional Lie group, Int. J. Contemp. Math. Sciences, 4 (18), (2009), 873-881.
[10] D. Lati  and M. L. Zeinali, Geodesic vectors of invariant (α, β)-metrics on nilpotent Lie groups of  five dimensional, Caspian Journal of Mathematical Sciences, 12 (2) (2023), 211-223.
[11] M. Matsumoto, Theory of Finsler spaces with ( ;  )-metric, Rep. Math. Phys., 31, (1992), 33-65.
[12] X. H. MO, An Introduction to Finsler Geometry, Vol.1, World Scienti c Publishing Co. Pte. Ltd., 2006.
[13] M. Obata, Ane connections on manifolds with almost complex quaternion or Hermitian structure, Jap. J. Math, 26, (1956), 43-79.
[14] M. Parhizkar and D. Lati , Geodesic vectors of Randers metrics on nilpotent Lie groups of dimension  ve, Global. J. Adv. Res. Class. Moder. Geom, 7, (2018), 92-101.
[15] M. Parhizkar and D. Lati , On invariant Matsumoto metrics, Vietnam Journal of Mathematics, 47, (2019), 355-365.
[16] M. L. Zeinali, Geodesic vectors of in nite series ( ;  )-metric on hypercomplex four dimensional Lie groups, Journal of Finsler Geometry and its Applications, 4 (2), (2023), 103-112.