On d-prime hyperideals of hyperrings

Document Type : Research Paper

Authors

1 Clinical Research Development Unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran

2 Ministry of Education Iran, Department of Education in Tehran, Tehran, Iran

Abstract

For Krasner hyperrings, we study d-prime hyperideals where d is a homo-derivation. Furthermore, we show that every maximal d-hyperideal and d-prime hyperideal is a prime hyperideal of a commutative hyperring. Finally, we prove that if W is a d-prime hyperideal of a hyperring R and d(qn) ∈ W for some q∈R, then d2(q)∈ W.

Keywords

Main Subjects


[1] A. Asokkumar, Derivations in hyperrings and prime hyperrings, Iran. J. Math. Sci. Inform., 8 (2013), 1-13.
[2] D. Boucher and F. Ulmer, Linear codes using skew polynomials with automorphisms and derivations, Des. Codes. Cryptogr., 70(3) (2014), 405-431.
[3] L. Creedon and K. Hughes, Derivations on group algebras with coding theory applications, Finite Fields Appl., 56 (2019), 247-265.
[4] B. Davvaz, P. Corsini and T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder, European J. Combin., 44 (2015), 208-217.
[5] M. M. Ebrahimi and H. Pajoohesh, Inner derivations and homo-derivations on l-rings, Acta Math. Hungar., 100(1-2) ( 2003), 157-165.
[6] Z. Gu and X. Tang, Ordered regular equivalence relations on ordered semihypergroups, J. Algebra, 450 (2016), 384-397.
[7] D. Heidari and B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl.  Math. Phys., 73(2) (2011), 85-96.
[8] J. Jun, Algebraic geometry over hyperrings, Adv. Math., 323 (2018), 142-192. 
[9] L. Kamali Ardekani and B. Davvaz, Some notes on differential hyperrings, Iranian Journal of Science and Technology, 39(1)(2015), 101-111.
[10] M. Krasner, A class of hyperrings and hyper elds, International J. Math. and Math. Sci., 6(2) (1983), 307-312.
[11] F. Marty, Sur une generalization de la notion de groupe, in: Proceedings of the 8th Congress Math. Scandinaves, Stockholm, Sweden, (1934), 45-49.
[12] J. Mittas, Hypergroups canoniques, Mathematica Balkanica, (1972), 165-179.
[13] S. Omidi and B. Davvaz, Fundamentals of derivations on (ordered) hyper(near)-rings, Beitr Algebra Geom., 60(3) (2019), 537-553.
[14] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
[15] Y. Rao, S. Kosari, H. Guan, M. Akhoundi and S. Omidi, A short note on the left A-Γ-hyperideals in ordered Γ- semihypergroups, AKCE International Journal of Graphs and Combinatorics, 19(1) (2022), 49-53.
[16] Y. Rao, S. Kosari, Z. Shao and S. Omidi, Some properties of derivations and m-k-hyperideals in ordered semihyperrings, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 83(3) (2021), 87-96.
[17] Y. Rao, S. Kosari, Z. Shao, M Akhoundi and S. Omidi, A study on A-I-Γ-hyperideals and (m; n)-Γ-hyperfilters in ordered 􀀀-Semihypergroups, Discrete Dyn. Nat. Soc., 2021 ( 2021), 10 pages.
[18] Z. Shao, X. Chen, S. Kosari and S. Omidi, On some properties of right pure (bi-quasi-)hyperideals in ordered semihyperrings, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 83(4) (2021), 95-104.
[19] J. Tang, X. Feng, B. Davvaz and X. Y. Xie, A further study on ordered regular equivalence relations in ordered semihypergroups, Open Math., 16 (2018), 168-184.
[20] N. Tipachot and B. Pibaljommee, Fuzzy interior hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math., 36 (2016), 859-870.