On the distance-based indices of Mobius function graph of finite groups

Document Type : Research Paper

Authors

1 Department of Mathematics, St. Dominics College, Kanjirapally, Kottayam, India

2 2Department of Mathematics, Catholicate College, Pathanamthitta - 689645, Kerala, India

Abstract

In the domain of mathematical chemistry and graph theory, topological indices have emerged as vital tools for quantifying the structural properties of molecular graphs. Recently, the Mobius function graph of a finite group has  earned significant attention due to its connections with algebraic and topological structures. However, determination of  the topological indices of these graphs remain largely unexplored. In this paper we compute and investigate the  relationships between several distance-based topological indices, including the Mostar index, weighted Mostar index,  Szeged index, weighted Szeged index, PI index and weighted PI index, for the Mobius function graphs of finite groups. 

Keywords

Main Subjects


[1] M. R. Ahmadi and R. Jahani-Nezhad, Energy and Wiener index of zero-divisor graphs, Iranian J. Math. Chem., 2(1) (2011), 45-51. (Special Issue on the Occasion of Mircea V. Diudea’s Sixtieth Birthday).
[2] S. Akhter, Z. Iqbal, I. A. Aslam andW. Gao, Computation of Mostar Index for some graph operations, Int. J. Quantum Chem., 121(15) (2021), e26674.
[3] L. Alex, K. C. Hridya and A. Varghese, Computing some bond additive indices of certain class of nanostructures, J. Hyperstructures, 13(2) (2024), 204-221.
[4] L. Alex and G. Indulal, On a conjecture on edge Mostar index of bicyclic graphs, Iranian J. Math. Chem., 14(2) (2023), 97-108.
[5] L. Alex and G. Indulal, Zagreb indices of a new sum of graphs, Ural Math. J., 9(1) (2023), 4-17. 
[6] L. Alex and G. Indulal, Zagreb indices of some chemical structures using new products of graphs, J. Hyperstructures, 12(2) (2023), 257-275.
[7] L. Alex and G. Indulal, Inverse problem for Mostar index of chemical trees and unicyclic graphs, Palest. J. Math., 13(4) (2024), 56-64.
[8] A. Ali and T. Dosli´c, Mostar index results and perspectives, Appl. Math. Comput., 404 (2021), 126245.
[9] N. I. Alimon, N. H. Sarmin and A. Erfanian, The Szeged and Wiener indices for coprime graph of dihedral groups, AIP Conf. Proc., 2266 (2020), 060006.
[10] S. Banerjee, Spectra and topological indices of comaximal graph of Zn, Results Math., 77(3) (2022), 1-23. 
[11] P. J. Cameron and S. Ghosh, The Power Graph of a Finite Group, Discrete Math., 311 (2011), 1220-1222.
[12] P. J. Cameron, The Power Graph of a Finite Group, II, J. Group Theory, 13 (2010), 779-783.
[13] M. S. Chithrabhanu and K. S. Somasundaram, PI index of bicyclic graphs, Commun. Comb. Optim., 9 (2024), 425-436.
[14] T. Dosli´c, I. Martinjak, R. ˇSkrekovski, S. T. Spuˇzevi´c and I. Zubac, Mostar index, J. Math. Chem., 56(10) (2018), 2995-3013.
[15] C. Gopika, J. Geetha and K. Somasundaram, Weighted PI index of tensor product and strong product of graphs, Discrete Math. Algorithms Appl., 21 (2021), 2150019.
[16] I. Gutman and A. Dobrynin, The Szeged index - a success story, Graph Theory Notes N. Y., 34 (1998), 37-44.
[17] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N. Y., 27 (1994), 9-15.
[18] R. Jose and D. Susha, Chromatic M-polynomial of M¨obius Function Graphs of Product Groups, Indian J. Sci. Technol., 17(41) (2024), 4332-4337.
[19] R. Jose and D. Susha, Topological indices and Laplacian spectrum of M¨obius function graph of dihedral groups, Eur. Chem. Bull., 12(10) (2023), 4027-4039.
[20] R. Jose, J. Kottarathil and D. Susha, Spectrum and Energy of the M¨obius function graph of finite cyclic groups, Data 
Sci. Sec., Lect. Notes Netw. Syst. 922 (2023), 165-176.
[21] P. Kandan, S. Subramanian and P. Rajesh, Weighted Mostar indices of certain graphs, Adv. Math. Sci. J., 10(9) (2021), 3093-3111.
[22] P. V. Khadikar, On a novel structural descriptor PI, Natl. Acad. Sci. Lett., 23 (2000), 113-118.
[23] M. H. Khalifeh, H. Yousefi and A. R. Ashrafi, Vertex and edge PI-indices of cartesian product graphs, Discrete Appl.
Math., 156 (2008), 1780-1789.
[24] S. Klavˇzar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., 9 (1996),
45-49.
[25] A. Kumar, L. Selvaganesh, P. J. Cameron and T. T. Chelvam, Recent developments on the power graph of finite
groups - a survey, AKCE Int. J. Graph Comb., 18(2) (2021).
[26] A. Ilic and N. Milosavljevi´c, The weighted vertex PI index, Math. Comput. Modelling, 57 (2013), 623-631.
[27] X. L. Ma, H. Q. Wei and L. Y. Yang, The Coprime Graph of a Group, Int. J. Group Theory, 3(3) (2014), 13-23.
[28] T. Mansour and M. Schork, The PI index of bridge and chain graphs, Match Communications in Mathematical and
in Computer Chemistry., 61(2009), 723-734.
[29] N. Tratnik, Computing weighted Szeged and PI indices from quotient graphs, Int. J. Quantum Chem., 119 (2019),
e26006.
[30] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69(1) (1947), 17-20.
[31] H. Yousefi-Azari, B. Manoochehrian and A. R. Ashrafi, The PI index of product graphs, Appl. Math. Lett., 21 (2008),
624-627.
[32] S. Zahidah, D. M. Mahanani and K. L. Oktaviana, Connectivity indices of Coprime graph of generalized quaternion
group, J. Indones. Math. Soc., 27(3) (2021), 285-296.