[1] S. B´acs´o and M. Matsumoto, Finsler spaces with h-curvature tensor H dependent on position alone, Publ. Math. Debrecen, 55(1999), 199-210.
[2] D. Bao, S.S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer, 2000.
[3] D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S3, J. London. Math. Soc. 66(2002), 453-467.
[4] X. Cheng, The (α, β)-metrics of scalar flag curvature, Differ. Geom. Appl, 35(2014), 361-369.
[5] X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169(2009), 317-340.
[6] X. Cheng, Z. Shen and Y. Zhou, On a class of locally dually flat Finsler metrics, Int. J. Math. 21(11) (2010), 1-13.
[7] Z. Shen, Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27(2006), 73-94.
[8] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
[9] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128(1997), 306-328.
[10] Z. Shen, On R-quadratic Finsler spaces, Publ. Math. Debrecen. 58(2001), 263-274. [11] A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indagationes. Math. (N.S.). 27(2016), 670-683.
[12] A. Tayebi and F. Eslami, On a class of generalized Berwald manifolds, Publ. Math. Debrecen, 105(2024), 379-402.
[13] A. Tayebi and B. Najafi, Shen’s processes on Finslerian connection theorey, Bull. Iran. Math. Soc. 36(2010), 2198-2204.
[14] A. Tayebi and M. Rafie. Rad, S-curvature of isotropic Berwald metrics, Sci. China. Series A: Math. 51(2008), 2198-2204.
[15] C. Vincze, On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors, European Journal of Math. 3(2017), 1098-1171.
[16] C. Vincze, On generalized Berwald manifolds with semi-symmetric compatible linear connections, Publ. Math. Debrecen. 83(2013), 741-755.
[17] M. Zohrehvand, On the existence of 3-dimensional Berwald manifolds, J. Finsler Geom. Appl. 2(1) (2021), 86-95.