[1] M. Arshad, J. Choi, S.Mubeen, K. S. Nisar and G. Rahman, A new extension of Mittag-Leffler function, Commun. Korean Math. Soc 33(2) (2018), 549–560.
[2] U. Ayub, S. Mubeen,T. Abdel jawad,G. Rahman and K.S. Nisar, The new Mittag-Leffler function and it’s applications, J. of Math., 5(1), (2020),1–8.
[3] R.A. Cerutti, L.L. Luque and G.A. Dorrego, on the (p − k) Mittag - Leffler function, Appl. Math. Sci., 11 (2017), 2541–2566.
[4] V.S. Dhakar and K. Sharma, On a recurrence relation of K-Mittag-Leffler function, Commun. Korean Math. Soc., 28(4) (2013), 851–856.
[5] R. Diaz and E. Pariguan, on hypergeometric function and k- pochhammersymbol, Div. Math. 15(2) (2007), 179–192.
[6] G.A. Dorrego and R.A. Cerutti, The k-Mittag Leffler function, Int. J. Contemp. Math. Sci., 7(15) (2012), 705–716.
[7] N.J. Fine, Note on the Hurwitz zeta-function Proc. Amer. Math. Soc.,Vol. 2 (1951), 361–364.
[8] K.S. Gehlot, Multiparameter K-Mittag-Leffler Function, Int. Math. Forum, 8(34) (2013), 1691 – 1702.
[9] K.S. Gehlot, The p-k Mittag-Leffler function. Palest. J. Math., 7(2) (2018), 628–632.
[10] K.S. Gehlot and A. Bhandari, The J-Generalized P-K Mittag-Leffler Function, J. Fract. Calc. Appl., 13(1) (2022), 122–129.
[11] K.S. Gehlot and K. Nantomah, p−q−k gamma and beta functions and their properties, IJPAM, 118(3) (2018), 525–533.
[12] I. Grattan-Guinness, M.G. Mittag-Leffler, Materials for the history of mathematics in the Institut Mittag-Leffler, Isis 62(3) (1971), 363–374.
[13] ¨ O. G¨urel Yılmaz, R. Akta¸s and F. Ta¸sdelen On some formulas for the k-analogue of Appell functions and generating relations via k-fractional derivative, Fract. Fract., 4(4) (2020), p. 48.
[14] R. D´ıaz, C. Ortiz and E. Pariguan, On the k-gamma q-distribution, Open Math., 8(3) (2010), 448–458.
[15] F. Mainardi, On some properties of the Mittag-Leffler function Eα(−tα), completely monotone for t > 0 with 0 < α < 1 arXiv preprint arXiv, 1305.0161, (2013).
[16] Mittag-Leffler, G¨osta Magnus. la nouvelle fonction Eα(x). CR Acad. Sci. Paris 137(2) (1903), 554–558.
[17] K.S. Nisar, S.D. Purohit, M.S. Abouzaid, M.A. Qurashia and D. Baleanu, Generalized k-Mittag-Leffler function and its composition with pathway integral operators, J. Nonlinear Sci. Appl 9(6) (2016), 3519–3526.
[18] T.R. Prabhakar, A singular integral equation with a generalized Mittag- Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7–15.
[19] R. Rahman, I. Suwan, K. Nisar, T. Abdeljawad, S. Samraiz and A. Ali, A basic study of a fractional integral operator with extended Mittag-Leffler kernel, AIMS, 2021.
[20] H.M. Srivastava, ˇZ. Tomovski Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel, Appl. Math. Comput., 211(1) (2009), 198–210.
[21] E.C. Titchmarsh, The theory of the Riemann zeta-function. The Clarendon Press Oxford University Press, 1986.
[22] G.K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Int. Educ., 24(1) (1993), 35–43.
[23] A. Wiman, Uber den fundamental Satz in der theorie der funktionen Eα(z), Acta Math. 29 (1905),191–201.